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Abstract—‘Top sites’ rankings of the most popular domains
are a core resource for the large-scale measurements that are
crucial in Web and Internet research. Recent rankings evolved
towards using passive DNS traffic data, but this data’s suitability
for measuring website popularity is poorly understood. In this
paper, we holistically evaluate how design decisions influence the
composition and desired properties of passive DNS-based domain
rankings. We isolate the effects of these decisions by generating
a ranking from the ground up using aggregated “post-recursor”
passive DNS data. We evaluate the impact of corrections for
resolver caching and CDNs, and confirm that measures such as
service classification, bucketing, or long-term aggregation produce
more reliable rankings. Our goal is to give transparent insight
into the process of using passive DNS data for domain rankings,
as a framework for the research community to understand how
to develop future rankings that address their needs.

I. INTRODUCTION

Large-scale Web and Internet measurements play a crucial
role in enabling research into how the modern Internet works.
Researchers have emphasized that such measurements should
be accurate, reproducible, and representative [1–5]. A core
element in conducting these measurements according to those
expectations concerns the selection of a (representative) sample
of websites that form the subject of the study. Most often,
researchers use ‘top sites’ rankings of the most popular domains
for this purpose, with hundreds of studies relying on these
rankings [6–9]. The academic research community has recently
raised awareness on the issues surrounding these rankings that
threaten their reliability, such as low agreement [6, 10], stability,
and transparency [7, 8]. Nevertheless, they remain a valuable
and necessary tool that the research community relies on.

Initially, popularity rankings depended on Web traffic col-
lected through toolbars, extensions, or trackers [8]. However,
it is challenging to recruit users who are willing to share
their traffic data, and to obtain such data in a privacy-
preserving way. Owing to these challenges, the Web-based
rankings that researchers rely on are steadily disappearing,
with Quantcast and Alexa discontinuing their rankings in 2020
and 2022 respectively. Only the Chrome User Experience
Report (CrUX) [11] has emerged as an alternative Web-based
ranking since then, which depends on Chrome users opting
in to URL sharing [6]. To overcome the privacy challenges
and subsequent unavailability of Web traffic data, several
providers have recently developed new rankings based on

DNS resolver traffic, including Cisco [12], Cloudflare [13], and
DomainTools [14]. Despite this shift to DNS traffic, we still lack
a good understanding of whether these DNS-based rankings
approximate website popularity well. Given the significant
impact of ranking properties on research results across all areas
of Web and Internet measurement [7], and the need to consider
alternatives to the disappearing Web-based rankings, we set out
to evaluate the impact of the design decisions made by DNS-
based ranking providers in their rankings’ designs, to establish
whether DNS-based rankings are appropriate and sufficiently
reliable for conducting Web and Internet measurements.

To identify which measures contribute to improving the
reliability and suitability of these rankings, we design a custom
ranking method for passive DNS traffic data, from the ground
up. This enables us to holistically and independently evaluate
the influence of design decisions on the composition and desired
properties of domain rankings, and isolate these effects, as
opposed to comparing existing rankings where the underlying
data collection and processing are confounding factors [6–8,
10]. We use a feed of “post-recursor” (“above-resolver” [15])
passive DNS traffic data [16] from SIE Europe [17], which is
aggregated from multiple “sensors”, i.e., recursive resolvers.
Its main advantages are the increased coverage and diversity
across networks and organizations, and better preservation
of user privacy, as data is aggregated and no IP-level data
is retained. However, there are significant challenges for
measuring popularity: the observed per-domain counts represent
cache misses at the recursive resolvers, i.e., not all user requests
are visible; ranking methods based on user-level data, such
as IP-based voting [18], cannot be used; and inherently, DNS
traffic mixes websites and top-level browsing context visits
with infrastructural domains and background DNS resolutions.

We assess to which extent design decisions improve the
stability of rankings. We evaluate design decisions introduced
in recent rankings [8, 11, 13] (‘bucketing’ ranks and long-term
averaging) as well as correcting mechanisms that we develop
using additional data available within our feed (accounting for
CDNs and classifying services). We demonstrate that the recent
design decisions improve ranking stability, that the correcting
mechanisms are necessary to avoid that certain domain types
overly dominate the ranking, and that service classification
caters for the different usage patterns of domain rankings.
Finally, while the simplest solution for ranking domains is
to sort them by their raw query counts [19], the observation978-3-903176-64-5 ©2024 IFIP



of only cache misses skews the interpretation of these query
counts. Specifically, resolver caching through TTL affects the
temporal query patterns and therefore query volumes of each
domain, potentially causing domain popularity to be both over-
and under-estimated. We weight DNS traffic by TTL, and while
after TTL-weighting, traffic distributions closely match those
observed on the web, the distribution of observed query counts
is more skewed than without weighting, and the suspectibility
to ranking manipulation is amplified, meaning that the design
decision to incorporate TTL (or not) must be carefully made.

Overall, our contribution confirms that the design decisions
introduced in recent (DNS-based) rankings are beneficial and
make these rankings suitable for Internet and Web measure-
ments. This improved understanding of the fundamentals of
building these rankings allows our community to continue
working towards rankings that meet the needs of researchers
and that fulfill the soundness and validity requirements that
ultimately increase trust in the resulting research findings [20].

II. BACKGROUND

A. Data sources and processing

Rankings of the most popular or “top” domain names or
websites use one of three types of data sources. Providers like
Alexa, Quantcast, or more recently the Chrome User Experience
Report (CrUX) [11] rely on web traffic data, gathering it from
browser reports or in-page scripts. Providers like Majestic
and Common Crawl [21] use the web link graph to rank
websites that are most often referred to from other websites,
similar to how search engines (at their core) rank search
results. A third source is passive DNS traffic, monitoring DNS
traffic at resolvers to derive the most popular domain names.
Finally, multiple existing rankings (and therefore sources) can
be merged into one aggregated ranking, as is done in Tranco [8].

Given that we evaluate design decisions on passive DNS-
based rankings, we look in more detail at the existing publicly
available lists and approaches using such data. WebShrinker’s
DNSFilter list [22] uses traffic to their DNS resolvers. Their
list ranks domains on the 30-day sum of a daily count of
organizations querying each domain, therefore incorporating
both the longevity and reach of domain accesses. Cloudflare’s
Radar list [13] uses traffic to their 1.1.1.1 resolvers. They use
a machine learning model that predicts each domain’s rank
based on an undocumented feature set, designed to estimate the
“relative size of the user population that accesses a domain” [13].
The SecRank list [18] uses traffic from the Chinese 114DNS
resolvers. The ranking is based on voting across the domain
preferences of individual IP addresses, weighted according to
each IP’s domain diversity and query volume. Cisco’s Umbrella
list uses traffic to their DNS resolvers [12]. Their list ranks
domains on “the number of unique client IPs invoking [each]
domain, relative to the sum of all requests to all domains”.

A common thread across these DNS-based rankings is that
they seek to incorporate the number of distinct entities (users,
organizations) querying a domain, often to better approximate
genuine human Web traffic. In contrast, aggregated post-
recursor data does not contain any information on who requests

a domain, so approaches using such data can only be designed
to use query volume data. Such data is also used for the
Farsight list from DomainTools [14], but their methods are
not documented, and the list is not publicly available. We
transparently explore the challenges brought about by this
limitation, and discuss potential solutions in our work.

B. Related work

Lists of popular domain names have long been used in
Internet measurement research (since at least 2005 [23, 24]),
but were only thoroughly scrutinized starting in 2018. For three
rankings (Alexa, Umbrella, and Majestic), Scheitle et al. [7]
described the methods, research usage, characteristics such as
stability, and potential impact on Internet measurement research.
Le Pochat et al. [8] similarly characterized the three rankings
and Quantcast from a security perspective, and showed that
all four rankings could be manipulated to insert any domain.
Rweyemamu et al. studied aspects such as weekly patterns and
domain clusters in detail [25], and refined the manipulation
attacks for Alexa and Umbrella [26]. Xu et al. [27] showed
how certain open DNS resolvers respond to non-recursive
queries in a way that can be abused to manipulate passive DNS-
based rankings. Two academic initiatives then sought to design
and publish domain rankings that improve upon properties
important for research: Tranco [8, 28] and SecRank [18].

Since the appearance of these new lists, further studies have
compared top lists and evaluated their accuracy in reflecting
popularity. Alby and Jäschke [10] expanded the comparison of
top lists to other data sets (e.g., Wikipedia) and search engine
results. They find low overlap between data sets, with hosts
present or popular in one data set missing from others. They
recommend that researchers select a random sample of websites
among Common Crawl hosts. Ruth et al. [6] compared top
lists to Cloudflare traffic data, concluding that the Chrome
User Experience Report [11] most accurately represents the
more popular websites, albeit as an unordered set. In general,
however, agreement of any list with the ‘ground-truth’ traffic
remains relatively low. Recent work has also shown that
popular websites differ significantly between countries and
languages [10, 29]. Xie and Li [30] measured real-world top
lists use, finding that ranked domains experience an increase
in traffic, corroborating the broad appeal of domain rankings.

Beyond these proposals and evaluations for public rankings,
several DNS-based ranking methods have been proposed but did
not materialize to concrete rankings. Proposals include ranking
domains on counts of querying DNS resolvers [31], unique
querying clients [32], or per-client DNS query counts [33].
Other proposals estimate client query volumes and therefore
popularity through active DNS cache probing [34–37]. Finally,
the DNS Observatory [15] tracks top objects including domains
in passive DNS post-recursor traffic, similar to our data set.

III. HOW TO RANK

A. What ranking properties do we expect?

To thoroughly evaluate whether rankings fulfill community
needs, we must first understand what the community expects



from these rankings. Inherently, we want the ranks to reflect
how popular a given domain is. However, what constitutes
popularity in and of itself is not necessarily well-defined. Most
(passive DNS-based) rankings define popularity as the number
of users or organizations accessing a domain, usually counting
at most one access per day. However, this disregards how often
and how regularly a domain is queried – for example, a search
engine or news website might be visited very often throughout
one day, yet would not have a better rank than a software
update domain that is queried only once a day but by as many
users. As one example of a more elaborate metric to quantify
popularity, the ranking approach of SecRank [18] integrates
query volume, query regularity, and IP address count.

Rankings should also exhibit properties that serve as require-
ments to make them more suitable for research usage. Prior
work evaluated rankings across these dimensions [6–8, 18]:

• Accuracy: rankings should correctly capture popularity, i.e.,
a better ranked domain should genuinely be more popular
than a worse ranked one.

• Agreement or similarity: if all rankings correctly capture
popularity, they should place domains at the same ranks.

• Manipulation resistance: rankings should be designed such
that domains cannot easily be inserted, removed, or shifted.

• Representativeness: rankings should correctly reflect Internet-
wide distributions and have good coverage across, e.g., site
categories, or countries.

• Reproducibility: rankings should be easily retrievable and
uniquely referenceable such that others can reproduce studies
with the exact rankings used in those studies.

• Stability: rankings should be sufficiently stable over time,
while still incorporating natural changes to popularity.

• Transparency: rankings should publish details on the methods
used in the ranking for better insight into possible biases.

B. Design decisions on composition

Certain design decisions can be made to influence the com-
position of a ranking and ultimately contributed to achieving
the previously listed desirable properties of top lists. While
these design decisions do not necessarily affect how well a
ranking reflects popularity, they still impact how a ranking
can be used and how it should be interpreted. Our evaluation
(Section VI) is focused on assessing how significantly these
design decisions affect a ranking’s composition.

• Domains represent websites, i.e., resources that humans tend
to view in a top-level browsing context, or infrastructure, i.e.,
resources such as nameservers. Depending on its data source,
a ranking may naturally tend to contain more domains of
one type: Web traffic and link graph lists will likely almost
exclusively contain websites, while DNS-based lists will also
include infrastructure domains. This distinction will affect
what data can be retrieved from a domain and is therefore
important to ensure that a ranking fits a research study’s
purpose. For example, an infrastructure domain may not host
any Web content, therefore appearing unreachable in a Web
measurement (and potentially skewing its results).

• A ranking can list root1 domains (e.g., Alexa), fully qualified
domain names (e.g., Umbrella), origins (e.g., CrUX), or even
URLs (e.g., Hispar [9]). This will affect the level of detail
in the analysis: e.g., measuring only root domains ignores
subdomain-specific properties or content.

• Each entry can have an individual rank, or entries can be
‘bucketed’, where only a rank bracket is given (e.g., ‘top
10000‘), as is done in Radar and CrUX. This is meant to
better match the ‘long-tail effect’: human browsing patterns
concentrate on a small number of very popular websites [29],
while less popular websites (in the long tail) quickly have
much less traffic and therefore become more difficult to
accurately rank [13]. While most studies ignore individual
ranks in existing lists [6], the lack of ranks can still affect
the level of detail at which a certain observation can be
correlated to a domain’s rank.

• A ranking can be computed using data from a certain period
of time. This time frame will affect the ranking’s stability
versus agility, as well as its update frequency. DNSFilter
and CrUX are averaged across (and updated every) 30 days,
Radar across 7 days, and most other lists across 1 day. Tranco
is updated every day but averages across 30 days of data.

• Each of these decisions, as well as the observed traffic
volumes and (diversity of) traffic origins in a data source,
affects the final length of a ranking. Commonly, rankings
have been cut off at 1 million entries. The ranking length will
affect how many resources a measurement can (dis)cover.

IV. POST-RECURSOR PASSIVE DNS DATA

We use post-recursor passive DNS data for our evaluation
of ranking design decisions, as it allows us to measure these
decisions independently. To readers unfamiliar with (passive)
DNS measurement, we recommend the tutorial by van der
Toorn et al. [38] as a primer.

A. Motivation

Passive DNS data is becoming increasingly common as a
data source for domain rankings, as it is a useful large-scale
repository of network activity that can be used to infer domain
popularity. Its advantages compared to other traffic data are:

• Web traffic data is usually collected from individual users.
Passive DNS data can be easily collected from (large)
recursive resolvers, increasing the user base across which
domain popularity is measured.

• Passive DNS data can be aggregated across a diverse range of
service providers, therefore smoothing over differing usage
patterns, e.g., mixing residential and corporate traffic [7, 25].

• Specifically for post-recursor passive DNS data, it better
preserves user privacy as the raw data is aggregated over the
users of all resolvers. For Web traffic data and pre-recursor
passive DNS data, raw data can be traced back to individual
users, potentially revealing their personal browsing habits.

1Also called eTLD+1 – one level above the effective top-level domain – or
pay-level domains.
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• Owing to these previous limitations, providers may be more
willing to share raw (post-recursor) passive DNS data with
researchers for the development of new domain rankings.

• The data contains all observed DNS records, enabling their
usage for applying corrections (e.g., CNAME redirects) or for
service classification (e.g., MX/NS hinting at non-websites).
Nevertheless, passive DNS data has certain disadvantages:

• DNS traffic mixes (human) top-level browsing context visits
and (automated) background DNS resolutions. This means
that a passive DNS-based ranking will interleave websites
and infrastructural domains.

• The selection of recursive resolvers matters for the (global)
coverage and representativeness of the ranking. The risk
exists that the user base is too small or too skewed to specific
user types. Simultaneously, domain popularity is country-
specific [29], making the coverage of countries also important
to the representativeness of the data.

• Specifically for post-recursor passive DNS data, it precludes
the use of ranking methods that incorporate per-user statistics,
e.g., the number of distinct users requesting a domain.
The combination of data availability, privacy preservation,

and access to raw data leads us to use post-recursor passive
DNS data for our evaluation of the influence of design decisions,
including the reliability of passive DNS-based rankings for all
areas of Web and Internet measurement [7].

B. Data provenance and format

The input for the rankings that we generate for our evaluation
is a continuous live feed of passive DNS entries in the Passive
DNS Common Output Format, published as an IETF Internet
Draft [16, 39] listing the mandatory and optional fields in
each feed message. This type of feed is already available from
large passive DNS aggregators such as Farsight Security’s
DNSDB,2 SIE Europe [17], CIRCL,3 or mnemonic.4 Such a
feed aggregates DNS requests from multiple ‘sensors’, i.e.,
recursive resolvers from organizations or networks that share

2https://www.farsightsecurity.com/solutions/dnsdb/
3https://www.circl.lu/services/passive-dns/
4https://docs.mnemonic.no/api/services/pdns/

their data with the passive DNS aggregator. Figure 1 shows
how resolvers execute DNS resolution, and where the boundary
between pre- and post-recursor traffic lies. The sensors only
observe the post-recursor traffic, i.e., the recursive queries to the
authoritative nameserver for entries missing from the recursive
resolver’s cache. Each sensor sends a copy of this traffic to
the aggregator that will merge them into a single feed.

The passive DNS aggregator maintains its own cache with a
count of observations of tuples of requested resource (rrname
field, i.e., the domain), record type (rrtype, e.g., A or AAAA),
and record(s) (rdata, value(s), e.g., IP address(es)). When a
tuple is observed for the first time, the aggregator stores it in
its cache. Subsequent observations by any sensor increment
the count. Entries in this cache expire either when the cache is
full or after a set time (for our SIE Europe feed, we estimate
this expiration time at 6 hours), upon which an EXPIRATION
message is emitted to the feed. This message contains the
previously described tuple and a count field for the total
number of observations across all sensors. Since the entry is
being removed from the cache, this count is then implicitly
reset to 0. Figure 2 shows how the count field relates to
queries pre- and post-recursor; we observe only the latter. In
addition, we rely on the rrttl field in this message for the
(authoritative) Time-To-Live (TTL) record value. While this
field is available in the data feed that we use, the field is
not documented in the draft standard, so it is not guaranteed
to be present. If necessary, it could be retrieved separately
through an active DNS query. Finally, the draft standard has
an optional sensor_id field for identifying the individual
sensor at which the record was seen. It is not present in all
passive DNS feeds (this also holds for ours), so we do not
expect or use it. In addition, the use of this field could raise
privacy issues as it may make it easier to trace observations
of specific domains to specific sensors.

V. RANKING GENERATION

To conduct our evaluation of the influence of design decision,
we use a feed of aggregated post-recursor passive DNS data
to generate three rankings: one each for fully qualified domain
names (FQDNs), root domains, and domains that likely host
websites (i.e., pages visited by regular Internet users while
browsing). Figure 3 schematically represents how we process
the data feed to ultimately generate our three ranking types.

A. Processing resource records

1) Observation counters: For the final popularity tally, we
track the counts of observations per domain (i.e., requested
resource) for the A and AAAA record types. We only observe
and count the requests above the recursive resolver — they
represent resolver cache misses. Observation counts therefore
depend on the resolver caching behavior, which is primarily
fixed by the TTL value set by the authoritative nameserver
and sent along with the resource records. Next to one variant
ranking where we ignore TTL, we generate a second variant
where we multiply all observation counts by this TTL value,
extracted from the passive DNS data itself. Simply put, we
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expect a domain with twice the TTL value to have half as
many visible requests, so we need to multiple its query count
by two. In case the TTL is zero, we retain the original count.
Because TTL values of more than 1 day (86400 seconds) are
commonly truncated by resolvers [40], and as we primarily use
1 day of data to generate rankings, we truncate all TTL values
to 1 day as well. Because of the dominance of nameservers
with 2-day TTLs (Section VI-C), this truncation is applied for
48% of queries, although this only affects 3.2% of FQDNs.

2) CNAME reverse cache: We track the counts of A/AAAA
record observations, i.e., query results instead of the queries
themselves. Therefore, if a user resolves a domain that uses
a CNAME record to map to the A/AAAA records of a second
domain, we count an observation for this second domain, not
for the domain the user originally visited. In particular, large
CDNs would therefore be over-counted (Section VI-C), because
CDN-hosted domains often point a CNAME record to a CDN
(sub)domain that hosts the actual website content [41, 42].
Another use case for CNAME redirection is mimicking first-
party context for tracking purposes [43].

We therefore maintain a cache of all observed mappings in
CNAME records observed in the feed of the ranking’s day. We
recursively reverse the resulting mapping for all domains in our
final ranking. If multiple records map to the same domain, we
select the reversed domain for which we observed the highest
total query count. We then retain the mapped domain if it is
observed often enough (CNAME count > 1% of the A/AAAA
count) to ignore erroneous CNAME records, and if it is not a
subdomain of the original domain, to prioritize root domains.

3) Service classifier: Our data feed comes from DNS
queries, and therefore contains infrastructural domains such as
nameservers that are not visited by humans through browsers.
However, certain studies focus on user Web traffic and require
website-only rankings, akin to Alexa, CrUX, or Majestic.

We therefore need to determine what service each domain
offers, to then separate domains into service-specific rankings.
In our design, we use internal and external passive sources to
determine the service. Internally, we mark the domains appear-
ing in MX and NS record values as mailservers and nameservers,
respectively. We also specifically mark nameservers in the root
zone file, as they are not included in the passive DNS feed [44].
We manually develop a service mapping for the most commonly
observed subdomain labels, e.g., www for a web service, or
ns1 for a nameserver. Externally, we collect websites from
three web-focused domain lists (BuiltWith,5 CrUX [11], and
DomainRank6 [45]), and domains in DBpedia [46].

5https://builtwith.com/top-1m
6https://www.domainrank.io/download.html

To resolve contradictory classifications from multiple sources
(e.g., when a NS record mistakenly contains a web domain),
we develop a scoring system that accounts for the reliability
and the certainty between and within sources, e.g., awarding
higher scores for records observed more often. We first classify
individual FQDNs; if there is no known class, we recursively
search a class of the parent domain. To determine the class of
a root domain, we compare its known class (if any) with that
of its subdomains, and heuristically select the most likely class
based on the scores and query counts of each. If a domain
offers multiple services, we assign it the most common service.

B. Computing the ranking

We generate daily rankings based on that day’s query counts,
CNAME reverse cache and service classifier data. To fill these
counters and caches, we process 1-day slices of the data feed.
For rankings across larger time periods (e.g., 7 days), we
combine these processed 1-day slices by summing counts and
merging caches. We first compute the base FQDN ranking
of fully qualified domain names, mapping each FQDN to its
reversed CNAME domain if applicable. We then generate a
‘root’ ranking across the total counts for each root domain’s
subdomains. We extract the root domain for each FQDN using
the Public Suffix List (PSL) [47]. We use the public section of
the PSL such that the root ranking contains only true eTLD+1s.
This means that the root ranking has one single entry for
domains listed in the private section (a user-contributed subset
of domains for which subdomains are maintained by separate
users, e.g., *.blogspot.com), and we sum the counts of all
subdomains to determine the root domain’s rank. A relatively
large part of the FQDN ranking (4.95%) belongs to a domain
in the PSL’s private section, mostly owing to the listing of
large CDN domains in the private section. Finally, we extract
a ‘web’ ranking of root domains classified as a website, using
only the counts of subdomains classified as a website.

C. Limitations

Rankings based on post-recursor passive DNS traffic are
inherently limited by the traffic representing only cache misses,
heavily aggregated across large-scale recursive resolvers. We
have no true count of client queries (to the recursive resolver)
nor identifiers for individual clients or sensors, and can
therefore not incorporate this into the ranking generation
process for our evaluation; hence our goal of evaluating whether
post-recursor traffic can still be useful for modeling domain
popularity despite these restrictions. The aggregator cache also
reduces temporal granularity, as counts are aggregated over six
hours, which we deem too long to meaningfully integrate in our
design, e.g., for client query modeling based on DNS request



inter-arrival times [35]. Evolutions and optimizations in DNS
resolution, such as QNAME minimization [48, 49] or encrypted
queries [50], may affect the reliability or comprehensiveness
of our traffic data. Since we observe DNS queries and not
(top-level browsing context) web visits, query counts may also
be inflated by website redirects [51], and by the inclusion of
third-party resources.

In terms of data quality, we have no reason to believe
that the counts provided by the passive DNS aggregator or
individual resolvers would be inaccurate. In contrast, we rely
on record values set by the domain operators themselves.
We sometimes observe inaccuracies that could affect our
data processing and subsequent results, e.g., google.com
incorrectly being set as a CNAME or NS record value. We
account for these errors by (heuristically) setting minimum
thresholds for our CNAME reverse cache, and by prioritizing
data sources based on reliability for our service classifier. We
also use the (authoritative) TTL values, which resolvers may not
always respect [18, 19] – e.g., Moura et al. found that values
under 1 hour were rarely changed, but TTLs over 1 day were
more frequently truncated [40, 52]. For ranking manipulation,
incorporating TTL could allow an attack to set high TTL values
as an amplifier [15, 52]. Attackers could then issue queries
if they can get a sensor to query the domain, e.g., through
IP spoofing [53]. We already propose truncating high TTL
values, and while we do not have access to sensor-level data,
an attacker would still need to discover the unknown sensors
and trigger a DNS query from as many of them as possible to
achieve a (better) rank. Moreover, the deployment at sensors of
proper protections against IP spoofing could prevent attackers
from issuing the necessary DNS queries [54, 55].

We monitor, store, and process a live feed of passive DNS
entries as the basis of our data set. Such feeds can produce
up to tens of gigabytes of aggregated data per hour, requiring
a stable and fast network connection with the aggregator and
efficient storage systems to preserve all data. During our data
collection, we experienced multiple small network disruptions
that led to the ingestion of the live feed silently stopping,
requiring manual intervention to restart feed processing. These
outages has led to gaps in our source data and therefore our
daily generated rankings. We verified for the date ranges that
we retain (Section VI) that the feed ingestion ran uninterrupted
for the entire day; we discarded rankings of days where fewer
than 24 hours of data was collected.

The lack of definitive ground truth to evaluate accuracy
forms a challenge for our evaluation. Ruth et al. [6] come
closest, comparing existing rankings to Cloudflare web traffic
(covering around 10% of all websites), but given a lack of
open data, we cannot replicate their method. We are also
dependent on one specific data aggregator for our evaluation.
Our method can be applied to all passive DNS data sources,
but our concrete results inherently only hold for SIE Europe
data, and are therefore biased to the usage patterns of the users
of its European-based resolvers. Due to this bias, we refrain
from directly comparing to other top sites rankings, and instead
focus on isolating influences within our own ranking data.

VI. EVALUATION

To evaluate the influence of design decisions on rankings
using real-world data, we apply our ranking generation method
to passive DNS data sourced from SIE Europe [17], aggre-
gated from sensors located at European-based commercial,
government, and higher education organizations.7 We generate
the three ranking types (FQDN, root, and web) using the
passive DNS feed for 27 June – 4 July, 13–28 July, 24 August
– 11 October, 17 October – 8 November, 15 November – 5
December, and 16–30 December 2023 (gaps are due to outages;
see Section V-C). When we describe a ranking for a given
day and time period, we use the data observed on that day
and the days before it for the duration of the time period. We
analyze the composition of the rankings, and the impact of the
different steps of the resource record processing (Section V-A)
on the rankings.

A. Ranking length
We first quantify the raw lengths of the computed rankings,

i.e., the total number of distinct observed domains over the
given period. We do not impose any threshold on the observed
query counts for inclusion in the ranking; Section VI-B
quantifies in detail the distribution of query counts, which
could serve to select a threshold that meets requirements for
accuracy and representativeness of a domain’s popularity yet
produces a sufficiently long ranking.

The lengths of the 1-day rankings vary over time between
3.3M and 9.5M FQDNs, 1.6M and 6.3M root domains, and
0.6M and 1.9M web domains (Figure 4); an average reduction
of 42.7% and 70.1% respectively. This shows that the choices of
excluding subdomains and/or prioritizing websites significantly
reduces a ranking’s length. In the first half of our measurement
period (until 6 October), the length of the web ranking always
exceeds 1 million websites, but this no longer always holds
afterwards. Figure 5 shows how raw query volumes dropped
from a peak of 1.4 to a low of 0.3 billion queries per day.8;
If the query volume becomes too low, the ranking no longer
achieves the threshold of 1 million websites that is commonly
used in other rankings, highlighting the need to observe a
sufficient traffic volume to capture diverse long-tail domains.

One way of augmenting query volumes is to aggregate traffic
data over a longer timespan. Figure 6 shows how the lengths
increase for 7-day rankings, yielding an even larger set of
domains that can be measured. Owing to the commonality
of some ranked domains across time (Section VI-D), these
lengths do not increase seven-fold. Instead, the increase in
ranking length is between a factor of 2.7 and 6.0 for FQDN
rankings, 2.7 and 7.79 for root rankings, and 2.2 and 4.7 for
web rankings. As a result, the 7-day web ranking contains at
least 2.5M websites, comfortably meeting the 1M threshold.

7No details are available on the exact set of organizations contributing to
SIE Europe. We also make no attempt at deanonymizing them.

8We have no immediate explanation for this variance in query volume.
Possible causes are an organic (temporary) decrease in traffic, the removal or
malfunctioning of sensors or the data feed, or bandwidth limitations.

9This outlier (above 7) corresponds to the trough in query volume, where
the data for the previous days contain more domains unseen in the 1-day data.
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Fig. 4. 1-day FQDN rankings are longer than root and web rankings, at an
average reduction of 42.7% and 70.1% respectively. (Weekends are highlighted
in gray.)
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Fig. 5. Observed query counts fluctuate over time, although we do not observe
a direct correlation with ranking lengths.

Takeaway: It is necessary to observe a sufficiently large traf-
fic volume such that there are enough distinct domains/websites
in the ranking. Traffic volume can be increased by aggregating
across multiple days, as is done in, e.g., Radar (7 days).

B. Observation count distribution

Unlike for existing rankings, we have access to the raw
scores that determine the final domain ranking. We use this to
characterize the estimated traffic distribution across the ranking
and its dependence on incorporating TTL, and to understand
whether the ranking exhibits patterns that have previously been
observed in web traffic.

Figure 7 shows the distribution of the observation counts,
both unweighted and weighted by TTL over the domain rank,
for the ranking of 1 September 2023. Distributions on other
days are similar. Overall, the score distributions appear to
adhere to a power law distribution, i.e., the rank and count
have an inverse relation. This distribution matches previous
observations in website and domain popularity distributions [8,
29, 56, 57]. For the FQDN rankings, there is a stagnation and
then drop-off in the head (well-ranked domains). We conjecture
that it is the effect of resolver caching: the expected traffic
increase (in client queries) is dampened (in cache misses)
because caches already serve these requests without going to
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Fig. 6. 7-day rankings, as shown, are much larger than 1-day rankings. Web
rankings easily surpass the common 1 million website threshold.
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Fig. 7. The rank-size distribution of (un)weighted observation counts appear
to adhere to a power law distribution (1 Sep. 2023 rankings).
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distribution of Google Chrome web traffic [6, Figure 1] (1 Sep. 2023 rankings).

the authoritative nameserver. There may also be remaining
effects from the overcounting of nameservers (Section V-A1).
In terms of susceptibility to manipulation, the total unweighted
observation counts indicate the query volume required to insert
a domain at a given rank. In the TTL-weighted ranking, setting
a high TTL amplifies the adversary’s ability to perform such
manipulation. There is also a drop-off in the tails of all rankings,
likely due to shared low discrete query counts. Another view on
this ranking tail comes from the absolute differences in query
counts from one rank to another. From a rank of around 1,000
onwards, differences sometimes drop to 0 and are generally very
low. This effect has also been previously observed in existing
rankings, where it was visible through alphabetically ranked
clusters [25]. This seems to confirm prior observations [8]
that differences between individual ranks in the tail are not
(statistically) significant, suggesting that bucketing is also useful
for grouping domains with very similar traffic levels.

A final way to view the traffic distribution is by charting the
cumulative traffic proportion along the ranking (Figure 8). For
the FQDN and root rankings, unweighted rankings attribute
more traffic to the head, while for web rankings, the opposite
is true. We also compare the web distribution to the Google
Chrome traffic distributions traced from Ruth et al. [29]. Here,
the TTL-weighted web ranking closely follows this distribution;
the unweighted ranking assigns more importance to the head.

Takeaway: The observed traffic distributions have a signifi-
cant effect on the resulting rankings, exacerbated by TTL. The
choice to weight query counts by TTL affects the granularity
at which domain query volumes can be compared, and how
the resulting distributions match those observed empirically.

C. Correcting mechanisms

We develop two correcting mechanisms as part of our
ranking method: CNAME reversal and service classification.



TABLE I
SERVICE CLASS DISTRIBUTION (1 SEP. 2023 FQDN RANKING).

Class Percentage

Unclassified 45.79
Website 37.65
Nameserver 9.31
Mailserver 3.45
Web admin panel 1.07

Class Percentage

IPv4 address 0.89
CDN 0.70
Other web service 0.44
Protocol (FTP, . . . ) 0.36
UUID 0.34
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Fig. 9. The distribution of service classes over buckets shows that nameservers
dominate the ranking head (1 Sep. 2023 rankings).

On 1 September 2023, across the FQDN ranking, we mapped
261,486 (3.26%) of all subdomains to another subdomain
based on CNAME reversal. 90,084 (34.5%) of them mapped to
another subdomain within the same root domain. The remaining
subdomains are distributed across 24,613 unique root domains
and mapped to one of 95,016 other root domains. Across these
other subdomains, major CDNs and managed DNS providers
are concentrated at the top (e.g., cloudflare.net, azure.com),
who would be overcounted without the CNAME reversal.

54% of the FQDN ranking on 1 September 2023 is classified
as a specific service, of which 69.5% as websites (Table I).
The rest cannot reliably be classified using our selection of
passive sources, and may require additional signals such as
an active crawl. Within the root ranking, 33% of domains can
be classified, of which 79.7% as a website to be included in
the web ranking. Given that our external sources for websites
integrate a notion of popularity (for rankings) or notability (for
Wiki sources), any unclassified root domains that would be
websites are more likely to be unpopular or uninteresting, next
to disposable [58] or algorithmically generated [59] domains.
In terms of the distribution of service classes over the ranking,
nameservers dominate the ranking head, in particular for the
FQDN ranking and when weighting by TTL (Figure 9).

Takeaway: Using correcting mechanisms, such as CNAME
reversal or a service classifier, corrects for otherwise overly
dominant domains such as CDNs and nameservers.

D. Stability

The stability of a ranking represents a balance between
rapidly integrating popularity changes and producing a set of
domains reusable over time. We measure the stability of the
three ranking types by comparing each daily ranking with
the previous day’s one using two metrics: Spearman’s rank
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Fig. 10. Between consecutive 1-day rankings, the web ranking is generally
the most stable, followed by the FQDN and then root ranking. As the Jaccard
index ignores ranks, this metric is equal for the (un)weighted rankings.

correlation, which takes the rank ordering into account, and the
Jaccard index, which operates on unordered sets and ignores
the ranks. As noted by Ruth et al. [6], these metrics are rather
pessimistic; we focus on comparing relative patterns between
ranking parameters, and less on absolute results.

Figure 10 shows the patterns that emerge across these
stability metrics. The web ranking is generally the most stable,
suggesting that web properties exhibit more stable visiting
patterns, whereas infrastructural domains may be more volatile
(e.g., due to different traffic distribution across servers). Next,
the FQDN ranking is more stable than the root ranking, sug-
gesting that our data source sees a similar set of (sub)domains
from day to day, but that their combination and re-ranking
based on root domains introduces more volatility. Weighting
by TTL reduces stability for ranked metrics, suggesting that
the unweighted ranking is preferable if stability is desired.

The Spearman rank correlation often exhibits negligible or
even negative correlations, suggesting that across the entire
ranking (head and long tail), ranks are very unstable over
time. This observation supports the preference found among
researchers to use rankings as unordered sets [6]. Indeed, the
Jaccard index shows higher stability when ignoring rank order.
Between using individual ranks and fully ignoring them, using
rank buckets may be a good middle ground. Figure 11 shows
the evolution of stability per bucket, computed for web rankings
using the Jaccard index, between the domain at the first rank
after the previous bucket and the domain at the last rank of the
current bucket, e.g., 1,001–10,000. First, the metric tends to a
much higher value than for the overall ranking (Figure 10) –
note that this ranking may be longer than 1 million domains –,
suggesting that buckets at the head are more stable in general.
Second, the buckets at the head are more stable, with the top
100 bucket being the most stable. (This effect is also most
pronounced for the web rankings.) This suggests that at their
head, the rankings contain domains that are repeatedly popular.

If a more stable ranking is desirable, e.g., for longitudinal
studies, the variability can be decreased by aggregating rankings
across a longer period of time [8, 28]. Aggregation of data
across 7 days vastly increases the stability for unordered metrics
(Figure 12, when compared to Figure 10); for ordered metrics,
there is also a positive but much less pronounced effect.

Takeaway: Both aggregating across longer data windows and
bucketing, as implemented in, e.g., Radar, improve stability. Ag-
gregation achieves this by smoothing over short-term volatility,
while bucketing smoothes over the small differences in observed
traffic volumes between consecutively ranked domains.
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more stable.

24 Jul
0.0

0.5

1.0

04 Sep
11 Sep

18 Sep
25 Sep

02 Oct
09 Oct

30 Oct
06 Nov

27 Nov
04 Dec

25 Dec

Sp
ea

rm
an

 c
or

re
la

tio
n

24 Jul
0.00

0.25

0.50

0.75

1.00

04 Sep
11 Sep

18 Sep
25 Sep

02 Oct
09 Oct

30 Oct
06 Nov

27 Nov
04 Dec

25 Dec

Ja
cc

ar
d 

in
de

x

FQDN
Root
Web

Fig. 12. Between consecutive 7-day unweighted rankings, all rankings become
much more stable, in particular on the unordered Jaccard index.

VII. DISCUSSION AND CONCLUSION

Our goal was to evaluate the impact of design decisions on
the development and characteristics of rankings using “post-
recursor” passive DNS data, and understand how to leverage
such data for generating domain rankings that are suitable
for Internet and Web measurements. Based on the design
of a ranking method and evaluation on the separate design
decisions, we can draw several conclusions on the challenges
and necessary steps that turn such data into a usable ranking.

At its base, passive DNS data is usable for generating a
website-oriented ranking, primarily after the service classifi-
cation step; otherwise, nameservers are dominant. This step
also lends itself to further development and refinement: we
deliberately chose to work only with passive service class
indicators to show that this resource-limited approach is already
feasible, but service classification may be improved with active
indicators (i.e., web crawls that reveal the presence of useful
content over HTTP), given the availability of the necessary
resources. Correcting factors are necessary: in addition to
service classification, we found that without CNAME reversal,
CDNs and managed DNS providers would be overrepresented.

Specifically for DNS-based rankings, TTL can be an im-
portant factor in accurately assessing domain popularity, as
it affects the temporal querying patterns (Figure 2). While
incorporating TTL makes theoretical sense, it appears that
this does not necessarily improve all ranking properties. For
example, nameservers dominate TTL-weighted rankings more
heavily, and the observation count distribution is more skewed
at the tail. High TTL values can be abused as an amplifier
in ranking manipulation. Nevertheless, TTL-weighted web
rankings follow known web traffic distributions more closely,
so appear more representative in this regard. Incorporating
TTL must therefore be carefully considered. For example,
Xie et al. [18] decided to omit TTL from SecRank as it was
difficult to reliably infer resolver caching behavior from TTL.
The choice of including or ignoring TTL is significant, and

there is very little similarity between unweighted and TTL-
weighted rankings (Appendix C), both when incorporating and
ignoring ranks, and even at the ranking head. This direct effect
further confirms our indirect observations that TTL affects
distributions and stability of rankings. More abstractly, this
shows how even for the exact same data set, one design decision
can result in wildly different outputs, suggesting that reliably
comparing all existing rankings and their variation in data
sources and methods is even more challenging. For example,
Ruth et al. [6] already had to introduce several normalizations
and adjustments, such as filtering on Cloudflare-only sites, to
allow for ranking comparison.

Two more recent ranking design elements appear to have
a positive impact: rank buckets and long-term aggregation.
Buckets yield significant improvements to stability, perhaps
unsurprisingly, given the low levels of traffic at the long tail
of the ranking, where small differences in rank may, therefore,
be meaningless (i.e., statistically insignificant). This effect had
already been observed at the heyday of the Alexa ranking [8],
and continues in Google Chrome traffic to this day [6]. This
also serves as confirmation of Cloudflare’s decision to deploy
two different models for compiling the head and tail of their
Radar ranking [13]. Longer data periods also lead to higher
stability, and aggregation over 7 days (like Radar) or even 30
days (like CrUX and Tranco) may therefore be preferable. Also,
in this light, while the finding by Ruth et al. that CrUX is more
reliable [6] is likely due to Chrome’s widespread visibility on
Web traffic, these design decisions also play a part in improving
CrUX’s (and other rankings’) accuracy.

In conclusion, (post-recursor) passive DNS traffic can be
used to generate a representative domain or website popularity
ranking. Despite its limitations, such as the lack of IP-level
data, the data is sufficiently rich to generate reliable rankings,
as it provides the necessary data for producing traffic volumes,
correcting mechanisms, and service classes. Through our
evaluation, we are able to confirm the benefits of the design
decisions made by recent rankings, specifically the move
towards bucketing and longer-term aggregation, although these
may not fulfill all use cases, e.g., if more granular ranks are
desired. Future directions for evaluating these rankings ideally
involve ground-truth data [6], long-term evaluations [28], and
an assessment of the impact on research results [7].
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APPENDIX A
ETHICS

Processing DNS query data may come with a privacy
risk, as it could be used to identify individual users and the
domains that they access [60–63]. We only have access to count
data aggregated from post-recursor requests across multiple
sensors that mix cache misses originating from many users
and institutions. The data does not contain any explicit fields
with likely personally identifiable information (PII), such as the
client IP address. We already identify domain names (likely)
containing IP addresses as a separate class, and would discard
them for any publicly available rankings. We further aggregate
the raw counts from the passive DNS feed per domain, and
for a final public ranking would select a reasonable cutoff
(on query count or ranking length) to retain only sufficiently
popular domains and avoid publicizing private internal domains.
We, therefore, consider that user privacy is preserved.

APPENDIX B
REPRODUCIBILITY

To enable reproducing our work, we make the ranking
generation code, ranking files, and analysis scripts and results
available. These resources are available from
https://domain-ranking-design-decisions.distrinet-research.be.

APPENDIX C
TTL INCORPORATION: SIMILARITY

04 Jul

0.1

0.0

0.1

24 Jul
28 Aug

11 Sep
25 Sep

09 Oct
23 Oct

06 Nov
27 Nov

18 DecSp
ea

rm
an

 c
or

re
la

tio
n

FQDN Root Web

04 Jul
0.00

0.05

0.10

0.15

24 Jul
28 Aug

11 Sep
25 Sep

09 Oct
23 Oct

06 Nov
27 Nov

18 Dec

Ja
cc

ar
d 

in
de

x

100
1k

10k
100k

Fig. 13. Unweighted and TTL-weighted rankings are very dissimilar, as
measured using the Spearman correlation, and for buckets of the web ranking
using the Jaccard index.


