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Abstract—A reliable way of estimating the location of an
Internet host is to infer it from packet round-trip times between
that host (the target) and several hosts in known locations (the
landmarks). This technique is known as active geolocation. A
major drawback of active geolocation is that it can be very slow,
especially when many targets need to be located and when the
landmarks are far away from the targets.

In this work, we improve the efficiency of an existing active
geolocation procedure by minimizing the number of landmarks it
requires to locate a set of targets. We evaluate several algorithms
for selecting an optimal set of landmarks from a larger pool:
purely random selection, clustering based on geography and
network topology, and incremental addition of landmarks far
from those already used, according to two different distance
metrics. We find that the most effective method is initial random
selection of 100 landmarks, followed by incremental addition
of landmarks while maximizing the Autonomous System (AS)
and geographic diversity of the pool. Using this method, we can
verify the location of a target using only 32% of a pool of 780
landmarks, with the same accuracy as if the entire pool had been
used.

Our code is publicly available for use and improvement. The
code can be accessed at https://github.com/grace71/tma24-vp-ls
under an open-source license.

I. INTRODUCTION

Many forms of research on the global Internet require
performing measurements from “vantage points” in known
locations, distributed all over the world. To give just a few
examples, Dang et al. [4] and Zhang et al. [38] used global
vantage points to study server latency as experienced by people
all over the world; and Filasto and Appelbaum [10], Niaki
et al. [25] and Sundara Raman et al. [31] use them on an
ongoing basis to detect communication blockades imposed by
governments. If some vantage points are not physically located
where the researchers think they are, observations from those
vantage points are invalid [20, 25].

The easiest and fastest way to determine the location of an
Internet host is to look up its IP address in an “IP-to-location”
database. Several organizations maintain such databases as
either free or paid services. Unfortunately, these databases
are not updated frequently enough for research purposes [2].
Ramesh et al. [27] and Du et al. [7] found that some types of
commonly used vantage points are moved so frequently that one
ought to re-check their locations on a daily basis. IP-to-location
databases are also notoriously full of errors [13, 26, 29, 30].

A more trustworthy way to locate vantage points is active
geolocation, which works by measuring packet round-trip times
(RTTs) between the host whose location is uncertain (the target)
and a set of hosts in known locations (the landmarks). Since
packets travel through the network at finite speeds, each RTT
measurement gives an upper bound on the distance between
the target and one landmark. Combining these upper bounds
produces an estimate of the target’s location. Active geolocation
has been known to be feasible since at least 2004, and is now
widely used by the network research community [e.g. 3, 7, 35].

Active geolocation can be very slow, especially if many
targets need to be located. For example, data collection for
“How to Catch when Proxies Lie” [35] required a full day
for each of the larger VPN providers they tested [34]. Daily
location re-checks of large sets of vantage points are impossible
if the check itself takes a day. Worse, as Hu et al. [16] point
out, incoming “ping” packets from all available landmarks may
be enough network traffic that the target experiences it as a
distributed denial-of-service attack.

An obvious way to speed up active geolocation of many
targets is to reduce the number of landmarks used. As we
explain in Section II, previous research has shown that only a
few landmarks are needed for an accurate location estimate,
as long as they are close to the target. The only problem is,
how do you know which landmarks are near each target?

In this paper, we experiment with several different ways to
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minimize the size of a pool of landmarks that will be used
to locate some set of targets. The basic idea is illustrated in
Fig. 1: to locate both of the targets T⃝, one could use the
landmarks labeled S⃝ and skip those labeled V⃝. The challenge
is to choose a subset of the landmarks for optimal efficiency,
while maintaining accuracy. All our selection techniques can
be used with any active geolocation algorithm, since they only
affect which landmarks are used to take RTT measurements and
the order in which they are chosen. The geolocation algorithm
we used for testing is described in Section III-C.

Our objective is to speed up the process of geolocating all
of the targets, while maintaining an existing level of accuracy.
Accuracy improvements may also be possible, but they are
reserved for future work. Thus, all of our results are described
in terms of agreement between geolocation results obtained
from a subset of the available landmarks, and those obtained
from the whole pool. An ideal outcome is 100% agreement,
with as small a subset as possible. We find that random selection
of landmarks works fairly well for small subsets of the pool
(< 100 landmarks) but cannot match the full pool for accuracy,
even when large subsets are used. Conversely, strategic choice
of landmarks, maximizing the “diversity” of the subset in some
sense, can produce a subset that matches the full pool, but only
by using 70% or more of the landmarks, which does not meet
our efficiency goals. A hybrid approach, combining random
selection and diversity maximization, is much more successful.
It can reproduce all the same location estimates as the full
pool using only 32% of the landmarks.

Organization of the paper: Section II summarizes previous
work on active geolocation. Section III describes the active
geolocation algorithm we tested our selection techniques with,
and the landmarks and targets we used. Section IV presents
each selection technique we tested and analyzes the results.
Section V closes with some discussion.

II. PREVIOUS WORK

Research into algorithms for active geolocation has been
ongoing for more than two decades. The main line of research
focuses on increasingly sophisticated statistical models of the
relationship between packet travel time and distance [e.g. 8, 14,
20, 21, 36]. Some proposed algorithms incorporate information
from route traces and/or prior knowledge of where hosts are
likely to be [e.g. 19, 23, 32, 33, 37].

While sophisticated models can be useful at the scale of
cities or provinces, Katz-Bassett et al. [19] reported in 2006
that all the models they tried were unreliable at larger scales,
where queuing delay and network topology play a strong role.
Weinberg et al. [35] found that this was still true a decade later.
Candela et al. [3] quantified the problem: one-way travel times
greater than 30 milliseconds are likely to be dominated by
effects other than great-circle distance. This is especially true
when the route takes a long detour, or when the “last hop” link
is slow, both of which are common for routes outside Europe
and North America [4]. Xie et al. [37] measured patterns of
variation in end-to-end travel time over long distances and
found that no simple mathematical model could account for

them, even within Europe and North America. Thus, no matter
how sophisticated the model is, landmarks far away from a
target are much less useful than those near by. When landmarks
near a target are available, Darwich et al. [5] find that only
a few are necessary to produce a location estimate good to
within tens of kilometers.

The conclusion is clear: active geolocation should use only
landmarks near the target. In addition to the accuracy benefits,
this should reduce the number of landmarks needed enough
to make the process be fast and non-disruptive. But if the
target could be anywhere in the world, how do you know
which landmarks are near it? Only a few researchers have
tried to address this question. Hu et al. [16] tackles it via
amortization: assuming that all the hosts in each /24 subnet
are physically near each other, it is only necessary to use all
available landmarks on a few “representatives” in each subnet
to identify appropriate landmarks to use for the rest of them.
Unfortunately, Jiang et al. [18] and Darwich et al. [5] have
both found that this assumption does not hold anymore. Even
if it were, it only helps when one is trying to geolocate many
hosts in every subnet of interest.

Du et al. [7] instead use prior information about the
geographical service area of the target’s AS to make an
informed choice of what landmarks are likely to be nearby.
Jiang et al. [18] use an incremental approach: choose a
landmark at random to ping the target, estimate where the
target might be, then choose additional landmarks that are
best able to reduce the uncertainty in that estimate. These
approaches are suitable for geolocating one target at a time.

Our work answers a different question: given a group of
targets, believed to be distributed over the entire world, and
a pool of available landmarks, also distributed over the entire
world, what is the smallest subset of the pool that can accurately
geolocate all of the targets? While this is still an exercise in
optimizing the use of landmarks, it has more in common with
Metis [1] and Holterbach et al. [15], both of which seek to
choose small numbers of “probes” that can, together, collect
a representative sample of network traffic all over the world.
Metis in particular works by optimizing distance diversity,
much as we do (see Section IV-B).

III. GEOLOCATION LANDMARKS, TARGETS, AND
ALGORITHM

In order to test our selection techniques, we needed hosts
in known locations to use as landmarks, hosts in unknown
locations to use as targets, and an active geolocation algorithm.

A. Landmarks

Active geolocation requires a large set of landmark hosts,
in known physical locations, distributed all over the world.
They must be in reliable, continuous operation, and available
on demand to use as the source of ping packets. Public
measurement “constellations,” such as RIPE Atlas [28], provide
just such a set of landmarks.

RIPE Atlas’s nodes are divided into two classes. “Probes”
are numerous and geographically diverse, but they run on cheap
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Fig. 2. Correlation across one-hour intervals within a day, of the minimum RTT between each ordered pair of RIPE anchors.

hardware and have limited bandwidth. “Anchors” are fewer, and
not as broadly distributed, but they use server-grade hardware
and have fast, efficient connectivity. Probes can only generate a
few ping packets per second [5], and their network connections
may be very slow, systematically inflating the distance estimates
they produce [4, 12]. Also, probes are operated by volunteers
and may be deactivated or moved without notice [2]. Largely
for this last reason, we elected to use only anchors for this
study. However, including probes as geolocation landmarks
does improve geolocation precision especially in Africa and
South America [3]. Algorithms that incrementally geolocate
a single target [e.g. 7, 18] can make effective use of probes
despite their limitations. Finding a way to apply this kind
of algorithm to the geolocation of many targets at once is a
priority for our future work. At the time of the study (December,
2022), there were 780 anchors; their geographic distribution is
summarized in Table I.

The anchors are programmed to measure round-trip times
between themselves and all the other anchors, constantly, and
upload the results to a public database [3, 6]. We can calibrate
active geolocation algorithms for the RIPE anchors using only
the data in this database.

Routes through the global Internet are constantly changing.
The typical latency of a long-distance route is stable over a
period of hours to single-digit days, but not longer than that [6].
This could cause the calibration of an active geolocation

TABLE I
WORLDWIDE DISTRIBUTION OF RIPE ATLAS ANCHORS, AND CITIES AND

COUNTRIES THAT CONTAIN THEM, AT THE TIME OF THE STUDY.

Continent # of countries cities landmarks

Asia 31 71 122
Europe 36 270 438
South America 8 20 28
Oceania 3 11 25
Africa 9 14 18
North America 9 95 149

algorithm to degrade rapidly. To get a sense of how rapidly,
we retrieved one full day’s worth of anchor-to-anchor RTT
measurements, and computed the correlation of minimum RTTs
from hour to hour. The correlation matrix is shown in Fig. 2,
along with the statistical distribution of correlations (empirical
cumulative distribution function). Changes from hour to hour
are visible in the matrix—notably, RTTs within the UTC 12h00–
19h00 period, typical working hours in the Americas, are better
correlated with each other than with RTTs observed at any
other time of day. However, the minimum RTT at any given
hour is always at least 99.5% correlated with the minimum RTT
at any other hour. Thus, we feel safe assuming that calibrations
will not degrade significantly over the course of a single day,
and that the time of day when we measure RTTs to target
nodes is unimportant.

B. Targets

We used 559 commercial VPN endpoints as the targets for
geolocation; their geographic distribution is summarized in
Table II. Commercial VPNs are convenient vantage points for
global network measurements [25, 35], but at the same time,
the VPN services have strong incentives to make exaggerated
claims of global coverage while actually concentrating their
servers in operationally convenient locations [4, 27]. Location
claims by VPN services should, therefore, be verified before
using VPN servers in research.

TABLE II
WORLDWIDE DISTRIBUTION OF TARGETS USED IN THIS STUDY, AND THE
COUNTRIES HOSTING THEM, ACCORDING TO THE TARGETS’ OPERATORS.

Continent # of countries targets

Asia 51 110
Europe 47 120
South America 13 27
Oceania 20 41
Africa 50 103
North America 34 176



C. Active Geolocation Algorithm

We test our landmark selection techniques using a simple
active geolocation algorithm developed for internal use by
ICLab [25, 35]. Given a set of landmarks, a target, and a
“claimed location”—a country where the target supposedly is—
ICLab’s algorithm produces a yes-or-no judgment of whether
the claimed location is accurate. It works by assuming each
measurement packet traveled the shortest possible great-circle
distance from its source landmark to the nearest border of
the claimed country, and no further. Each measured RTT is
converted to the minimum speed that the measurement packet
would have had to travel to cover that distance. If any of these
minimum speed estimates is greater than a calibrated speed
limit, the claimed location is rejected, otherwise it is accepted.

The speed limit is calibrated using a simplified version of the
calibration procedure for CBG [14]: For all pairs of landmarks,
divide the distance between that pair by the minimum RTT
measured between that pair, producing a travel speed estimate.
Take the fastest of all such speed estimates as the speed limit.
For this study, we used a calibrated speed limit of 153 km/ms
(0.51 c). This is a little higher than Katz-Bassett et al. [19]’s
estimated “speed of Internet” (133 km/ms, 0.44 c), but well
below the theoretical limit of 200 km/ms (0.67 c), the speed of
light in long-distance optical fiber.1 We presume the difference
from Katz-Bassett et al.’s estimate reflects improvements to
global network latency since 2006.

In most cases, measurement packets will have to travel
much farther than just to the nearest border of the claimed
country. Dividing an RTT measurement by a shorter distance
than the packet actually would have had to travel produces a
speed estimate lower than the packet’s true speed. Therefore,
ICLab’s algorithm errs systematically on the side of acceptance.
Reducing the number of landmarks used for a measurement
can only increase this systematic error, because removing data
points from a measurement that rejected a claim can convert
it into a measurement that accepts a claim, but not vice versa.
In the rest of the paper, whenever we discuss “agreement”
between results from the full landmark pool and results from a
reduced set of landmarks, keep in mind that each disagreement
means the data from the full landmark pool rejected a claim
and the data from the reduced set did not.

D. Ethical issues

Our experiments generated a relatively small amount of
network traffic: roughly two million ICMP Echo Request
and Echo Reply packets, generated using the RIPE Atlas
measurement API, over the course of five days. All were
transmitted between RIPE anchors and commercial VPN
servers. Each VPN server received 2400 packets over the
course of a few minutes: not enough to disrupt service. We
are customers of the VPN services whose servers we located,
and we honored the terms of service of both RIPE Atlas and
the VPN services.

1The refractive index of fused silica is 1.45–1.55 depending on wave-
length [24]. “Hollow core” fibers with an effective refractive index very close
to 1 are not yet usable for long-distance communication [11].
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Fig. 3. Mean agreement with the full landmark pool, for randomly selected
landmark sets of all possible sizes. Relative 95% confidence interval presented
on a different scale for legibility.

We recorded only the round-trip time of each ping exchange
plus public metadata about the hosts involved, such as IP
addresses, hostnames, and AS numbers. None of the hosts
involved were personal computers, therefore this metadata is
not personally identifying information.

IV. LANDMARK SELECTION

In this section, we describe each of the landmark selection
algorithms we tested and characterize their performance relative
to the full pool of available landmarks.

A. Random Selection

Mathematical analysis of sampling from large scale-free
graphs indicates that a small, purely random sample is likely to
represent the complete graph as well or better than any more
structured sample [22].

Therefore, we expect that a small random sample will
give us a reasonable first estimate of how many landmarks
are actually needed for accurate geolocation of a target. We
generated subsets of the landmark pool uniformly at random
(without replacement). For each possible subset size (1 to
780), we selected 1,000 random subsets. Fig. 3 shows the
mean agreement between the geolocation results obtained from
random subsets and the geolocation results obtained from the
complete landmark pool, as a function of subset size, with a
95% confidence interval.

We need only fourteen randomly selected landmarks to
match 90% of the geolocation results from the complete
landmark pool. However, the marginal benefit of adding more
randomly selected landmarks falls off rapidly thereafter. 95%
agreement requires 50 landmarks, 97.5% agreement requires
180 landmarks, and full agreement is not achieved until all
landmarks are in use. This matches the prediction of sampling
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Type # clusters Mean agreement vs. random

ASes 534 99.28% > 99.20%
Cities 481 99.62 > 98.99
Countries 96 93.88 ≪ 96.32
Continents 6 83.08 < 84.05

(b) Cluster types, counts, and agreement for subset size = number
of clusters.

Fig. 4. Effectiveness of clustering selection.

theory, and confirms that it is possible to geolocate a target
using only a small number of landmarks, but doing so reliably
will require more strategic selection of the landmarks.

B. Diversity Metrics

Landmarks that are geographically and topologically close
to each other can be expected to produce similar round-trip
time measurements for the same target. Therefore, we suspect
we can find a small set of landmarks that can still accurately
geolocate all targets by maximizing diversity of the landmarks’
locations. Mathematically, let V = {v1, . . . , vn} denote the full
pool of landmarks. For any subset of the landmarks, S ⊆ V,
define the diversity D(S) with respect to a distance metric
d(a, b) as:

D(S) =
−

s, t ∈ S
d(s, t) (1)

The hypothesis is that small landmark subsets that maximize
D(S), with respect to a well-chosen distance metric d, can
yield geolocation results that perfectly agree with the results
from the full landmark pool.

C. Clustering Selection

Our first few candidates for d will group the landmarks into
clusters based on the Autonomous System (AS) that operates
them, or the city, country, or continent where they are physically
located. Intuitively, AS clusters should reflect Internet topology,
whereas location clusters reflect geography. The cluster distance
metric is binary:

dC(a, b) =
|

0 if C(a) = C(b)
1 if C(a) ̸= C(b)

(2)

where C(v) identifies the cluster that landmark v belongs to.
For each of the four types of cluster, we generated 1,000

landmark subsets using one landmark selected at random from
each cluster. (Thus, the subset size is equal to the number of
clusters.) The mean agreement for all the subsets of one type
is shown in Fig. 4b, along with the size of those subsets, and
a comparison with subsets of the same size selected purely at
random. Country- and continent-based cluster selection does
not outperform random selection; city- and AS-based selection
based does outperform random selection, but only slightly.

We then extended this procedure to subsets of all sizes
by choosing landmarks at random with the constraint that,
as far as is possible, every cluster must contribute the same
number of landmarks. For example, a subset of size 13 using
continent clusters would have two landmarks from five of the
six continents and three from the sixth. Which continent was
the sixth would be randomized. Fig. 4a shows mean agreement
with the full landmark pool for cluster-based subsets of all sizes.
We generated 1,000 landmark subsets for each cluster. City-
and AS-based selection outperforms random selection for most
subset sizes, and both can achieve perfect (100%) agreement
without using the entire pool. Continent-based selection can
also outperform random, but only when 370 landmarks or
more are used, and only by a little; country-based selection is
always worse than random. This is probably because country-
based clustering does not choose enough landmarks within
geographically large countries. Most city and AS clusters
contain only one or two landmarks, and none contain more
than 26. Country clusters are much more uneven: 31 country
clusters also have only one landmark, but another 31 have
more than five, and two have more than 100.

D. Greatest-Distance Selection

Another pair of candidates for d use actual geographic
distances,

dg(a, b) = distance between a and b over the
surface of the Earth

(3)

and measured round-trip times as a proxy for distances through
the network,

dr(a, b) = minimum RTT measured from a to b. (4)

Note that the metric dr might not be symmetric (i.e. it’s possible
that dr(a, b) ̸= dr(b, a)), making it not formally a distance
metric, but this does not cause problems as D(S) always counts
both d(a, b) and d(b, a).

To select landmark subsets that maximize D for either dg

or dr, we use a greedy algorithm inspired by Prim’s algorithm
for spanning trees [17]. For any landmark v ∈ V, define m(v)
as the largest distance from v to any other landmark, according
to the d in use:

m(v) = max
w ∈ V

d(v, w) (5)

One variant of the algorithm begins by choosing a landmark
within the target’s claimed location, whenever possible, and
failing that, a landmark that maximizes m. The other variant
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Fig. 5. Distance-diversity maximization: agreement with the full landmark
pool.

always begins with a landmark that maximizes m. In both
cases, we continue by choosing landmarks that maximize m
from the landmarks that have not already been selected, until
we reach the desired subset size k. Whenever there is more than
one landmark that meets the criterion, we pick one at random.
(This algorithm is greedy because adding to S a landmark from
V\S that maximizes m increases D as much as possible at that
stage of the process. Since adding a landmark to S can never
decrease D(S), nor can it prevent any other landmark from
being added to S in the future, a greedy algorithm produces
an optimal solution.)

Because it is unusual for any two pairs of landmarks to be
at exactly the same distance from each other, greatest-distance
selection makes far fewer random choices than clustering
selection. Therefore, we only generated one landmark subset of
each possible size using each possible variant of the algorithm.
Fig. 5 shows agreement with the full landmark pool for all
four variants as a function of subset size. For small sizes, none
of the variants can outperform random selection. However,
geographic distance maximization becomes better than random
selection when 305 or more landmarks are in use (39% of the
pool). It achieves perfect agreement with the full landmark
pool when 590 or more landmarks are in use (75.6% of the
pool), which random selection never does.

RTT-distance maximization is less effective than geographic
distance maximization for small to medium-sized subsets,
but when 547 or more landmarks are in use (70% of the
pool) it passes both random selection and geographic distance
maximization and jumps all the way to perfect agreement.
These phenomena may be related to the nonlinear relationship
between great-circle routes and actual network paths over longer
distances [4, 9, 37]. Since the difference between 547 and 590 is
small, and geographic distance maximization is more effective
than RTT-distance maximization for most subset sizes, we did
not experiment any further with RTT-distance maximization.

The different rules for choosing the first landmark have a
notable effect on agreement for small subset sizes in both
RTT-distance and geographic distance maximization. But, this
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Fig. 6. Hybrid 1 (clustering + geographic distance maximization): agreement
with the full landmark pool.

effect ceases to make a difference when 182 or more landmarks
for RTT-distance and 132 or more landmarks for geographic
distance are in use. For this reason, we did not experiment any
further with using a landmark in the claimed country as the
first landmark.

E. Hybrid Selection

Random and clustering selection outperforms geographic
distance maximization at small subset sizes; the opposite is
true for large subset sizes. This suggests that hybrid approaches
might perform better than any one alone.

1) Hybrid 1: Clustering and Greatest Distance: To combine
clustering with greatest-distance selection, we define a hybrid
metric,

dh(a, b) = WC · dC(a, b) + Wd · dd(a, b) (6)

where dC is any of the clustering metrics, dd is the geographic
distance metric, and WC and Wd are weights. Landmark
subsets that maximize diversity according to this metric can
be generated using the same greedy algorithm as we used to
maximize diversity according to distance alone.

We only tested Wd = 1 and WC greater than the maximum
dd, i.e. cluster diversity is given overwhelmingly more weight
than distance diversity. These weights permit a minor optimiza-
tion: if the landmark subset does not include a representative
from each cluster, select the next landmark from clusters that
are not yet represented.

Fig. 6 shows agreement with the full landmark pool for
landmark subsets that maximize the hybrid metric, using all
four types of clusters, as a function of subset size. Unlike
clustering by itself, the hybrid is worse than random selection
at small subset sizes. However, if either AS or city-based
clustering is used, the hybrid becomes better than random
selection when 210 landmarks or more are in use (27% of the
pool). This is 100 fewer landmarks than were required to beat
random selection using geographic distance maximization alone.
Country-based clustering is also better than random selection
at 210 landmarks or so, but only by a tiny fraction, and it falls
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off again with more. However, the hybrid with country-based
clustering performs much better than country-based clustering
alone, confirming our suspicion that country-based clustering
performs poorly by itself because of inadequate geographic
diversity within large countries. Strikingly, this variant achieves
perfect agreement with the full pool before any of the other
variants, at 384 landmarks (49% of the pool). AS clustering is
not far behind, reaching perfect agreement at 409 landmarks;
city and continent clustering don’t get there until 572 and
590 landmarks, respectively. (Continent clustering is almost
indistinguishable from geographic distance maximization alone.
This is because there are only six continents.)

Overall, AS-based clustering is the best choice of these four
variants, outperforming both random selection and the other
three variants for most subsets of 212 or more landmarks.

2) Hybrid 2: Random, Then Hybrid 1: None of the selection
algorithms tested so far is substantially better than purely
random selection for small subset sizes. Random selection
reaches 96% agreement with the full pool using only 82
landmarks; distance maximization and hybrid 1 can only reach
90% agreement with 82 landmarks.

The last variation we investigated was to begin the process
by selecting up to 100 landmarks at random and then expand
those subsets using hybrid 1. Fig. 7 shows agreement with
the full landmark pool for the landmark subsets generated this
way, using all four types of clusters, as a function of subset
size. (The hybrid curves deviate from the comparison even
when k ≤ 100 because the “random” comparison curve is an
average of 1000, whereas each of the four hybrid curves in
Fig. 7 is based on just one landmark set of each size.)

Comparing with Fig. 6, the principal effect of this mod-
ification is to bring performance up to parity with random
selection, or nearly so, throughout the range—not just for small
subsets. The modification also accelerates AS-based clustering’s
convergence to full agreement with the landmark pool, which
it now reaches at only 280 landmarks, 130 fewer than were
required for hybrid 1. However, the other three cluster types
require slightly more landmarks to reach full agreement.

TABLE III
NUMBER OF LANDMARKS REQUIRED TO ACHIEVE 100% AGREEMENT WITH
THE FULL POOL, FOR EACH SELECTION PROCEDURE THAT ACHIEVED 100%

AGREEMENT WITHOUT USING THE FULL POOL.

# landmarks to. . .

Shorthand Metric Cluster by
First 100
random?

beat
random

perfect
agreement

CLUSTER-CITY Cities 179 683
H2-CONTINENT Geodesic Continents Yes 85 610
CLUSTER-AS ASes 254 605
DIST-GEO Geodesic 305 590
H1-CONTINENT Geodesic Continents 305 590
H2-CITY Geodesic Cities Yes 179 578
DIST-RTT Travel time 547 547
H1-AS Geodesic ASes 213 410
H2-COUNTRY Geodesic Countries Yes 88 408
H1-COUNTRY Geodesic Countries 182 384
H2-AS Geodesic ASes Yes 195 280

F. Summary and Analysis

Table III summarizes the performance of each selection
procedure that was able to achieve 100% agreement with the
full landmark pool without using all available landmarks. (Thus,
pure random selection and two variants of cluster selection
are omitted. Geodesic maximization starting from the claimed
country is also omitted because its performance is identical to
pure geodesic maximization.) They are sorted in descending
order of the number of landmarks needed for 100% agreement.

Although many of the procedures we tested can reduce the
number of landmarks needed for 100% agreement somewhat,
there is a clear winner: algorithm H2-AS (hybrid 2 with AS-
based clustering) requires only 280 landmarks, 36% of the
pool, for perfect agreement. Assuming that each landmark
sends three ICMP Echo Request packets to each target for
geolocation, the total number of request packets required to
geolocate 559 targets would be reduced from 1,308,060 to
469,560, and we could expect the time required for the process
to drop proportionally.

Use of (partial) random selection introduces the possibility of
geolocation results being unstable over time. Perfect agreement
using 280 landmarks today might not be perfect agreement
anymore next week, because a different group of landmarks
might be selected and an important one might get left out. If
this is a concern, algorithm H1-COUNTRY is the runner-up,
achieving perfect agreement with 384 landmarks (49% of the
pool; 643,968 request packets required), and it will always
pick the same subset for a given k.

If one is willing to accept some deviation from the results
produced by the full landmark pool, then algorithm H1-AS
(hybrid 1 with AS-based clustering) should also be considered,
as it achieves 99.46% agreement using only 213 landmarks,
27% of the pool. 355,527 ICMP packets would need to be
sent. Algorithms H2-AS, H2-CONTINENT, and H1-COUNTRY
do not significantly outperform random selection up till the
point where they jump to 100% accuracy, despite their low
numbers in the “beat random” column of Table III.



V. CONCLUSION

In this paper, we demonstrated that it is possible to reduce
by two-thirds the number of landmarks required to actively
geolocate an entire set of target hosts, with no change in the
overall results. If small changes are acceptable, the number
can be reduced further.

We wish to highlight how much more effective cluster-
based selection was when clusters were defined based on cities
or ASes than when they were defined based on countries or
continents. This once again demonstrates the importance of fine-
grained diversity in one’s measurement constellation, consistent
with previous observations by Candela et al. [3] and Appel
et al. [1].

The fact that geographic distance diversity is a more effective
selection criterion than RTT-based (topological) distance diver-
sity may seem to go against expectations from previous work
such as Dang et al. [4] and Xie et al. [37]. If long-distance
RTTs are dominated by factors other than geographic distance,
shouldn’t it be more effective to maximize diversity according
to a metric that honors those factors? This logic is incorrect
because those other factors are confounding factors. Adding a
landmark that’s a long way away from the current subset as
measured by round-trip time may mean adding a landmark that
has large RTTs to everything, and therefore does not contribute
effectively to any location estimate. Adding landmarks far away
in geographic distance, on the other hand, is an effective way
to select landmarks that are near targets far away from the
current subset, and therefore poorly located.

A priority for future work is to combine our selection rules
with an incremental active geolocation algorithm, such as
those described by Du et al. [7] and Jiang et al. [18]. We
expect that the combination will perform better than either
alone, both by reducing the number of landmarks needed even
more, and by rapidly locating the target within a region small
enough to use sophisticated delay-distance models. Also, unlike
ICLab’s simple geolocation algorithm, incremental algorithms
can make effective use of RIPE Atlas probes. They were
excluded from this study because their locations might be
outdated [2], and because they might be attached to slow
networks [12]. Incremental geolocation is naturally robust to
landmarks that produce high distance estimates for either of
these reasons, and including probes will give us much better
geographic diversity, especially outside of Europe and North
America.
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