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Abstract—To effectively monitor a network and verify its
performance, it is essential to quickly detect sudden changes in its
state, even when the form of such a change is initially unknown.
While classical quickest change detection methods are potentially
useful, they rely on probing the network state periodically, which
in turn, may induce high measurement costs. In this paper,
we extend existing frameworks in quickest change detection to
allow for both adaptive measurement periods and unknown post-
change measurement distribution. In our extended framework,
the agent decides both when to raise an alarm and when to
take the next measurement (if any), maintaining a trade-off
between detection delay, false alarm rate and measurement costs.
We evaluate both classical methods with periodic measurements
as well as our adaptive scheme, called RoME-QCD (Robust
and Measurement Efficient Quickest Change Detection). We
demonstrate the latter’s superiority analytically and verify this
observation via numerical experiments, both using one-way delay
data from a 5G testbed and synthetically generated data.

I. INTRODUCTION

With the rapid global deployment of 5G networks, a great
number of emerging applications have been enabled. Some of
these applications include real-time communication, industrial
control and autonomous vehicles. To ensure their continuous
successful operation, it is critical that certain metrics such as
round trip time (RTT) or one-way delay (OWD) stay within
service level agreements. However, these metrics, for any
given user equipment (UE) are dependent on the wireless
channel, exogeneous processes within the UE, base station
configuration and UE hardware and configuration. Several of
these are subject to change at any point, and there is a non-
trivial relationship between this network state and the perfor-
mance metrics. It is therefore vital to probe the performance
metrics and respond to changes which cause them to deviate
from pre-set parameters.

In this paper, we study a network where a probe attempts
to detect performance changes, having a negative impact on
the service operations, as soon as possible. The probe has
plenty of data of the normal state in day-to-day operations,
but must be able to respond to a large variety of changes. The
probe’s job is further complicated by potentially expensive
network measurements, since these measurements are taken by
(for instance) injecting probe packets into the network using
TWAMP [1], costing bandwidth and other resources. As such,

Fig. 1. An illustrative industrial 5G network, where a measurement agents
attempts to detect One-Way Delay (OWD) changes through active probing.

the probe must adaptively measure less often when there is
no reason to suspect a change has occurred, while still being
ready to respond whenever a change does occur [2], [3]. The
scenario under consideration is modelled in Figure 1.

The problem of determining a change in the network per-
formance appears a good match for the well-known problem
of quickest change detection (QCD) [4]. In this framework,
the probe monitors a sequence of random variables, which
could for instance be the uplink or downlink OWD of a UE
in the network. Whenever these random variables change in
distribution from one well-known distribution to another, the
probe raises an alarm. However, any such network probe will
face two major challenges. First, while the distribution before
the change may be well-known, its change could be caused
by any one of many possible changes in the network. These
could be a node failure, batch traffic arrival or a hand-over.
As such, it is difficult to a priori predict what the distribution
will look like after the change has occurred. Then, network
measurements can be costly especially when taken in bulk,
as they consume power, bandwidth and CPU time. Hence, the
network probe should both be robust to a large set of potential
changes, as well as use adaptive measurement schedules to
minimize network overhead of probing. While both of these
aspects have been explored separately within the framework of
QCD [5], [6], it remains an open question how to combine the
two and what impact this will have on network management.

This paper addresses this challenge and presents the follow-
ing contributions. (1) We propose RoME-QCD (Robust and
Measurement Efficient Quickest Change Detection), an adap-
tive probing scheme that monitors the network performance978-3-903176-64-5 ©2024 IFIP



efficiently, even in the presence of unknown changes. (2) We
analyze this scheme and prove that it achieves an efficient
trade-off between measurement cost, false alarm rate and
detection delay. (3) We evaluate RoME-QCD on data from a
5G testbed and show its utility for realistic network scenarios.

II. RELATED WORK

Adaptive network monitoring is far from a new topic
in literature. The challenges with measurement overhead in
software defined networking (SDN) were tackled by Wang and
Su [7] and Adrichem et al [8] by proposing mechanisms and
methods for adaptive polling and sampling. Further, Adaptive
monitoring for analysis and orchestration in 5G systems were
discussed and targeted by Xie et al. [2]. Their framework was
used in the context of service assurance, adapting monitoring
to analytical results in order to balance monitoring cost to
network performance. Further, an adaptive probing system
with the purpose of detecting outages in edge networks was
designed by [3]. This system probes the network regularly in
order to guarantee freshness, increasing probing frequency to
resolve uncertainty whenever necessary. Finally, Steinert and
Gillblad proposed a heuristic method for adapting measure-
ment frequency of RTT measurements over a network path
[9]. Their methods rely on computing the information distance
between empirically estimated RTT distributions.

Another method to detect anomalies in a network is to study
and detect anomalous flows. Phan et al. [10] do this by study-
ing flows at different granularities, and Tan et al. [11] follow
up on this in their lightweight application FLOWSPOTTER.

Initially, the framework of detecting a change without prior
knowledge on the change time was formulated by Lorden
[4]. He showed the value of a scheme considering only the
maximal cumulative sum of log-likelihood ratios, called the
CUSUM statistic, by showing an asymptotic lower bound on
the number of measurements post-change and that an agent
tracking only the CUSUM statistic could meet such a bound
asymptotically. Later, Moustakides showed that an algorithm
tracking only the CUSUM statistic is exactly optimal [12].

Lorden simulateously extended the framework to the case
where the post-change parameter belonged to a one-parameter
exponential family, and showed how one could asymptotically
optimize the algorithm even when the post-change parameter
was initially unknown [4]. Lai [13] extended this case to
pre- and post-change distributions which had some history
dependence. It was, however Unnikrishnan and Veeravalli who
formulated the framework for robust change point detection
that we use today [5]. They considered the pre- and post-
change distributions to lie within some uncertainty sets, and
demanded that the algorithm used should always minimize the
worst-case post-change delay, taken over the entire set.

Later, Liang and Veeravalli relaxed the stochastic ordering
assumption into the notion of weakly stochastically bounded
sets, which, informally, only requires that some pair of dis-
tributions is closer to each other than any other pair within
the uncertainty sets [14]. They also showed that a general set
of post-change distributions, only defined by bounds on mean

and variance, was weakly stochastically bounded with respect
to a singleton set of any pre-change distribution.

Banerjee and Veeravalli in 2013 extended this scenario by
adding a component of data-efficiency [15]. They allowed
the agent to “skip” measurements and as such, control the
measurement frequency in a slotted time formulation. Their
method, which they proved was asymptotically optimal when
the constraint on false alarm rate grows stricter, utilizes the
undershoot of the CUSUM statistic, normally set to 0, and
set the number of skipped slots as a linear function of this
undershoot.

Lindståhl et al. [6] introduced a new framework, where the
agent is allowed to set the next measurement time at any point
after the current time. They set the physical time detection
delay and false alarm rate as constraint, and attempted to
optimize the measurement costs pre- and post-change subject
to these constraint. They showed that the post-change costs
is invariant to the measurement schedule given the stopping
rule, and that a simple adaptive scheme could qualitatively
outperform classical periodic measurements. They did not,
however, show an optimal measurement scheme in terms of
pre-change measurement frequency.

Both of the above works assume knowledge of the pre-
and post-change measurement distribution. Our work is novel
in that we remove this assumption while taking measurement
frequency into account, and show the application of such
schemes in network performance verification.

III. MONITORING CHANGES THROUGH QUICKEST CHANGE
DETECTION

In this section, we describe how measurements are taken,
and how the framework of QCD is useful for detecting
performance changes in the network.

A. Quickest Change Detection (QCD) framework

A measurement probe (synonymously called a measurement
agent) observes a sequence {Xi}Ni=1 of OWD measurements,
which are modelled as random variables. These measurements
are independent of each other and, before some time ν ∈ R,
they are all identically distributed according to some known
distribution1 p∞. At time ν, some event occurs in the network,
causing the measurements to change and instead be distributed
according to some unknown distribution p0. The network
probe is then tasked with raising an alarm as soon as possible.

While the agent cannot know p0, it may know some
(potentially large) uncertainty set P0 such that p0 ∈ P0. If the
agent knows P0, that is because it may know some general
properties of the change, or just that the change will cause
some increase or decrease a certain performance indicator. In
the sequel, we assume that P0 is stochastically bounded with
respect to p∞ . That is, there is some distribution p0 which

1In state-of-the-art robust QCD, p∞ is often unknown, but in this paper,
we assume that it is known. This is partly because the key results would not
change even if it was unknown, partly for simplicity, and partly because having
detailed information about the pre-change distribution is far more realistic than
having detailed information about the post-change distribution.



Fig. 2. Quickest detection with adaptive measurement schedules.

is closer to p∞ than any other distribution in p0
2. In Section

IV-D we show how to compute p0 for a variety of uncertainty
sets.

Classical QCD algorithms treat network measurements as
an optimal stopping problem, with the aim of minimizing the
number of measurements after the change has occurred, as
well as the rate of incurring false alarms. Implementing these
algorithms in practice, one can only assume that measurements
are taken periodically. However, this leaves us unable to
model scenarios where the network probe may change its
measurement frequency in real time. Indeed, the probe may
aim to balance delay and false alarm rate to the measurement
frequency pre-change. This frequency represents the operation
cost of the network probe in scenarios where change events
are relatively uncommon. In this paper, we adapt the frame-
work introduced in [6] where the agent adaptively schedules
measurements based on past observations. More precisely, the
network probe makes the following decisions.

1) Measurement strategy: The first measurement is taken
at time τ1. For any i ≥ 1, after the i-th measurement,
the probe makes a decision on a measurement interval
τi+1 ≥ 0 based on the previous measurement intervals
and outcomes (τk, Xk)

i
k=1. The next potential measure-

ment is taken at time ti+1 :=
∑i+1

k=1 τk.
2) Alarm strategy: For any i ≥ 1, the probe may raise an

alarm after the i-th measurement, based on the previous
measurement intervals and outcomes (τk, Xk)

i
k=1.

We denote by nν the number of measurements taken before
the change time ν, and by N the number of measurements
taken before the probe raises an alarm. We let Pν,p0

be the
probability measure when the change time is ν and the post-
change distribution is p0, P∞ be the probability measure
when there is no change (so ν = ∞) and Eν,p0

and E∞ be
the corresponding expectations. The detection problem with
adaptive measurement schedules is visualized in Figure 2.

B. Performance metrics and trade-offs

In the QCD framework, especially when using adaptive
measurement schedules, the network probe needs to balance
several performance metrics. For instance, detecting a change
faster can be done by taking measurements more frequently,
increasing the operation cost, or by setting a lower bar for
alarms, increasing false alarm rate. These metrics are formal-
ized below.
False alarm rate: To keep the operation cost down, the
network probe wants to avoid an abundance of false alarms.

2More formally, if D(p||q) denotes the Kullback-Leibler divergence from
distribution p to distribution q, we assume that there exists some distribution
p0 such that, for any p0 ∈ P0, D(p0||p∞) ≤ D(p0||p∞)−D(p0||p0).

The false alarm rate is captured by the physical Average Run
Length (ARL) to false alarm, which is defined as E∞[tN ].
That is, we let the probe keep up operations on a network
where no change occurs, and see how long it takes for it to
raise an alarm.
Worst case detection delay: It is business critical that changes
in the network are detected fast, no matter what the change
is or when it occurs. The network probe thus needs to ensure
a sufficiently small worst case average detection delay, here
defined as E[tN ] := supν≥0,p0∈P0

Eν,p0 [tN − ν|tN ≥ ν].
Measurement costs: In addition to these metrics, we are also
interested in minimizing the number of measurements, i.e. the
number of probe packets sent over the network. We distinguish
two types of measurement costs, those induced before the
change and those after the change.

Pre-change measurement frequency: Since it is unknown
when a change will occur, one cannot measure the ex-
act number of measurements pre-change and must instead
study the measurement frequency. Letting (τk)k≥1 denote the
lengths of the measurement intervals, we define E∞[τ̂ ] =
lim infn→∞ E∞

[
1
n

∑n
k=1 τk

]
as the stationary measurement

period. E∞[τ̂ ] is a long term average of inter-measurement
times.

Post-change measurement cost: We define the post-change
measurement cost as the greatest possible average number of
measurements taken after the change has occurred. Similarly
to the detection delay, this is formally defined as

E[N ] := sup
0≤ν<∞,p0∈P0

(
ess sup Eν,p0

[
(N − nν)

+|tN ≥ ν
])

.

It is well-known (see [4], [14], or [6]) that this quantity is
asymptotically lower bounded as

E[N ] ≥
(
I
−1

+ o(1)
)
log

(
γ

β

)
(1)

when γ → ∞. It remains to study whether this lower bound
is tight, which we establish that it is in Section IV.
Trade-offs and objectives: The network probe is interested in
maintaining a sufficiently small false alarm rate while keeping
the delay E[tN ] small (defined for the worst possible post-
change distribution p0 ∈ P0). It is always possible to increase
the ARL while maintaining the same detection delay, simply
by increasing the measurement frequency, but this increases
measurement costs. In the interest of guaranteeing a certain
level of performance in terms of detection delay and false
alarm rate, we treat both of these objectives as constraints.
While keeping those objectives within pre-defined limits, we
aim to minimize the measurement cost, particularly before the
change (i.e., maximizing E∞[τ̂ ]). As such, we define a set
of network probes, we call them (γ, β,P0)-compliant probes,
which meet the relevant constraints, and attempt to optimize
the measurement frequency over this set of agents.

Definition 1. A network probe ({τn}n≥1, N) is said to be
(γ, β,P0)-compliant if it fulfills E∞[tN ] ≥ γ and E[tN ] ≤ β

While our framework allows for any γ and β, note that the
problem is trivial unless γ > β, as the probe could otherwise



simply wait for exactly γ time units and then stop immediately,
measuring only once.

IV. ANALYSIS AND ALGORITHMS

In this section, we present QCD schemes and analyze their
performance. These schemes are based on the CUSUM statis-
tic, commonly used in QCD. We first analyze the performance
of probes with periodic measurement schedules. We then
introduce ROME-QCD, a strategy with adaptive schedules,
and establish their superiority against schemes with periodic
schedules.

A. Cumulative sum statistics

While many schemes for network probes can be proposed,
some statistics have shown to be more useful than others. In
particular, the case with fixed measurement intervals suggests
that it is optimal to study a probing scheme which depends
only on the cumulative sum (CUSUM) statistic. We establish
that, even with adaptive measurement schedules in the robust
setting, these probes are efficient.

When p0 is known, the CUSUM statistic,
taken after n measurements, is defined as Sn :=

max1≤i≤n

∑n
k=i log

(
p0(Xk)
p∞(Xk)

)
. Obviously the CUSUM

statistic is a random variable, and is interpreted as the sum of
log-likelihood ratios maximized over starting indices, ending
at the current measurement index n. When p0 is unknown,
this statistic is no longer available to the probe. Instead,
we use an alternatively statistic when P0 is stochastically
bounded with respect to {p∞}, still called the CUSUM
statistic, defined as Sn := max1≤i≤n

∑n
k=i log

(
p0(Xk)
p∞(Xk)

)
.

Here p0 is the least favorable distribution of P0
3. Using the

next result, we are able to introduce a useful class of probes,
depending only on this statistic.

Lemma 1. Let a probe depend only on CUSUM-statistics
Sn, that is ∀n ≥ 0, τn+1 = g(Sn) for some non-increasing
function g and N = min{n ≥ 1 : Sn > S(0)}. Then we have:
(i) Eν,p0

[(N − nν)
+|tN > ν] is independent of the post-

change measurement intervals {τn}Nn=nν+1.
(ii) For any n ≥ 1, E∞[τn|N > n− 1] ≥ E∞[τn] ≥ E∞[τ̂ ].

In the above lemma, (i) allows us to put less effort into
minimizing the number of measurements post-change, as it
depends only on the stopping rule and not on the sampling
strategy. Further, (ii) justifies using E∞[τ̂ ] as a metric to
capture the pre-change measurement frequency. Lemma 1 is
proven in Appendix A.

B. Periodic measurement schedules

A natural measurement strategy consists in scheduling mea-
surements periodically, i.e., for some fixed τ > 0 and for all
n, τn = τ . We investigate how τ and the stopping rule should
be chosen in order to create (γ, β,P0)-compliant probes with
periodic measurement schedules.

3This statistic is indeed known to the probe.

First, we note that, under some mild assumptions on P0,
it is possible to create (γ, β,P0)-compliant probes by solving
the system of equations

τ =
βI

S(0) + ξ
and S(0) = log

(γ
τ

)
. (2)

It has previously been shown [6] that such periodic mea-
surement schemes meet the requirements on ARL and delay
when the true distribution is p0, and intuitively this distribution
is harder to detect than any other post-change distribution
p0 ∈ P0. Here, ξ := maxr E0,p0

[Z − r|Z ≥ r] is the maximal
overshoot and is mainly a technical quantity. When γ > β,
the above system of equations has two solutions, and we pick
that with the greatest inter-measurement time. However, it is
notable that since S(0) is an increasing function of γ, the
measurement period τ is a decreasing function of γ. This is a
rather undesirable property, as we would prefer that the aver-
age measurement frequency only depends on detection delay
requirement β. As such, fixing the measurement schedules
to be periodic comes with a rather steep cost in terms of
measurement frequency. This is stated clearly in the following
proposition, which is a straightforward consequence of results
in [6]. We show that there exist classes of probes with adaptive
measurement schedules which are (γ, β,P0)-compliant for any
value of γ but which all have the same measurement frequency,
E∞[τ̂ ]. This means that indeed, periodic schedules come with
a high measurement cost.

Proposition 1. Fix the delay guarantee β > 0. For any period
τ > 0, there exists γ̄(τ) such that for any false alarm rate
guarantee γ > γ̄(τ), there exists no periodic probe with
measurement period τ that is (γ, β,P0)-compliant.

C. The RoME-QCD algorithm

With periodic measurement schedules, decreasing the false
alarm rate comes at the cost of greater measurement frequency
before the change occurs. A natural question is whether it is
possible to devise an intelligent measurement schedule under
which this trade-off can be avoided. As was shown in [6], this
can be done whenever the post-change distribution is known.
We now show that this is also possible whenever the post-
change distribution lies within the uncertainty set P0. Using
the least favorable distribution p0 ∈ P0, we can use the associ-
ated CUSUM statistic Sn to introduce the algorithm ROME-
QCD. This algorithm, just like periodic measurement schedule
probes, aims to stop whenever Sn exceeds some threshold
S(0). Furthermore, it also aims to measure periodically most of
the time. However, it also uses some crisis threshold S(1) such
that whenever S(1) < Sn ≤ S(0), it measures aggressively.
The idea behind this algorithm is that this crisis region will
rarely be entered when tn < ν, but will constitute the majority
of the measurements while tn > ν. The pseudo-code of probes
with ROME-QCD is presented in Algorithm 1.

We wish to verify that such probes have desired properties,
and that the aggressive measurements in the crisis region has
a minimal impact on the pre-change measurement frequency.



Algorithm 1 ROME-QCD

Input: Crisis threshold S(1), stopping threshold S(0), calm
period τ
Initialization: S0 = 0
for n = 1, ... do

if Sn−1 > S(0) then
Stop and raise alarm.

else if Sn−1 > S(1) then
τn := 0

else
τn := τ

end if
Wait for time period τn.
Obtain measurement outcome Xn.
Update Sn := log

(
p0(Xn)
p∞(Xn)

)
+max(0, Sn−1)

end for

As such, arbitrarily harsh false alarm rate constraints can be
imposed without affecting measurement costs. To do so, we
need the following assumption on the set P0, restricting its
higher moments.

Assumption 1. There exists a constant σZ such that for
all p0 ∈ P0, the random variable Z := log( p0(X)

p∞(X) ) is
subgaussian under p0 with parameter no greater than σZ . In
other words, for any z ∈ R it holds that PX∼p0

(|Z| ≥ z) ≤
2 exp

(
− z2

σ2
Z

)
.

While Assumption 1 might not always hold, it is a milder
assumption than it may seem. In practice, the metrics of
interest are often bounded, e.g. OWD is truncated by some
upper bound when a packet is discarded. Such metrics are
then sub-gaussian by nature. In theory, it is usually enough to
limit higher moments in other ways, often with just a bound
on the variance, to guarantee a well-performing algorithm. It
is, however, considerably more difficult to state explicitly the
parameters of such an algorithm. We are now ready to state
our main result.

Theorem 1. Fix the delay requirement β, and assume As-
sumption 1. Select (τ, S(0), S(1)) satisfying:

τ = β
(1− exp(−I

2
/2σ2

Z))

exp(S(1)I/σ2
Z)

(3)

S(0) = log

(
γ

τ(1− exp(−S(1)))

)
. (4)

Then, for any γ > 0, ROME-QCD using parameters
(τ, S(0), S(1)) is (γ, β,P0)-compliant, and its pre-change
measurement cost satisfies E∞[τ̂ ] ≥ τc, for some constant
0 < τc < ∞ that does not depend on γ. In addition, as
γ → ∞, it fulfills

E[N ] ≤
(
I
−1

+ o(1)
)
log

(
γ

β

)
.

Theorem 1, proven in Appendix A, contrasts with Propo-
sition 1. It states that the same pre-change measurement
frequency can be achieved by ROME-QCD for any value
of γ > 0, and is constructive in that it specifies values
of (τ, S(0), S(1)) that guarantee that the corresponding QCD
network probe is (γ, β,P0)-compliant. We also establish that
the resulting network probe has (asymptotically) minimal
post-change measurement cost, which perhaps should not be
surprising in light of Lemma 1.

D. Computing the least favorable distribution

While the above results are promising, the astute reader may
have noted that their utility depends on being able to identify
the least favorable distribution p0, and being able to evaluate
the expression p0(X)

p∞(X) for any X . For complicated models of
p∞ and P0, this may not be immediately obvious. However,
relying on previous work [5], [14], we below show some
commonly used uncertainty sets P0 where these quantities can
indeed be computed.

One-parameter exponential families: First, we study the
case of one-parameter exponential families. Letting h, T and
Λ be real-valued functions, such distributions are defined by
their probability density function p(x; θ) = h(x) exp(θT (x)−
Λ(θ)). Here x is a measurement outcome and θ is a parameter.
We are interested in the case p∞(x) = p(x; θ∞) and where
P0 = {p0 : p0(x) = p(x; θ0), θ0 ∈ [θmin, θmax]}. Whenever
θ∞ /∈ [θmin, θmax], it is well known that the least favorable
distribution is

p0(x) =

{
p(x; θmin), θ∞ < θmin

p(x; θmax), θ∞ > θmax.
(5)

In the sequel, we assume θ∞ < θmin, the analysis is anal-
ogous for θ∞ > θmax. We note that, under these families
Zn = log

(
p0(Xn)
p∞(Xn)

)
= (θmin − θ∞)T (Xn) − (Λ(θmin) −

Λ(θ∞)). As such, we can calculate I := E0,p0
[Z] =

(θmin − θ∞)E0,p0
[T (X)]− (Λ(θmin)− Λ(θ∞)), and we also

find that Assumption 1 can be met if T (X) is subgaussian
under p(X; θmin), since it will also be subgaussian for all
θ ∈ [θmin, θmax].

Mean-shifted uncertainty sets: While one-parameter expo-
nential families are interesting for the sake of analysis, it
is often unrealistic that one would find a family containing
both the pre-change distribution and the entire set of post-
change distributions. Another approach, rooted in the idea
that whenever an important change occurs, some key metric
will increase, is the approach of using mean-shifted sets.
In this case, we deal with sets of distributions which have
mean greater than some threshold, as well as bounded second
moments. Formally, we assume that we know the pre-change
distribution p∞ and that for some real numbers µ0 and η we
have E∞[X] := µ∞ < η. The mean-shifted set is defined as

P0 = {p0 : E0,p0 [X] ≥ η, V0,p0(X) < V}

where V is some (potentially large) upper bound on the vari-
ance of distributions within P0. These sets are very general,



and analyzing them only relies on the knowledge that X will
in expectation shift from µ0 to some value greater than η.
Considering these sets is realistic. Indeed, η can be be chosen
such that if the shift in X is smaller than η in expectation, one
can disregard the change as it would have negligible impact
on the network performance.

A key feature of these sets is that we can identify the least
favorable distribution of these sets and that it takes a rather
comfortable form for the sake of QCD. This is a result first
shown in [14] and stated below.

Proposition 2. Define by κ0(λ) = log (E∞[exp(λX)]) the
cumulant generative function for p∞. Then, if V is sufficiently
large, P0 is stochastically bounded with respect to p∞, and
there exists a value λ⋆ such that the least favorable distribution
is given by

p0(x) = p∞(x) exp(λ⋆x− κ0(λ
⋆)) (6)

Furthermore, λ⋆ is the solution to the fixed point equation in
λ

E∞[X exp(λX)] = ηE∞[exp(λX)]. (7)

Equation (7) often does not exhibit an explicit solution, but
it can be solved numerically. A consequence of Proposition 2
is that the log-likelihood ratio of mean-shifted uncertainty sets
can be expressed as Zn = λ⋆Xn − κ0(λ

⋆), which allows us
to immediately see that I = λ⋆η − κ0(λ

⋆).

V. TESTBED DESCRIPTION

To evaluate RoME-QCD on a realistic network scenario, we
use data from a research 5G testbed instrumented with mea-
surement and analysis capabilities [16], [17]. It corresponds
to a commercial 5G mmWave NSA system where the control
is performed through a 4G LTE eNB and user-plane through
a 5G gNB. We configure the 4G LTE eNB to operate on
band B3 (1800 MHz, 5 MHz bandwidth), and 5G gNB on
band n257 (28 GHz, 100 MHz bandwidth). The spectrum is
then shared between uplink and downlink using a 4:1 Time-
Division Duplex (TDD) pattern [18]. Finally, the transmission
power is set to 2 W.

In the testbed, there are, for the purpose of experiments
considered in this paper, two user equipment (UEs). One UE
is for performance measurements and the other one is for
generating traffic load scenarios. Change points are defined
in terms of change in load or UE movement pattern.

Data-plane network performance in this testbed is measured
in terms of One-Way Delay (OWD) between a OWD probe
source and a probe packet reflector every 50 ms using 1400
byte TWAMP packets [1] as illustrated in Figure 3. Precise
measurements of OWD is enabled by time stamping all
TWAMP packets, when sent and reflected, in the OWD probe
source by using a repeater. Using the repeater we capture 4
time stamps, namely (T1) sending the probe packet from the
probe source, (T2) receiving the probe packet at the reflector,
(T3) returning the packet from the reflector, and (T4) receiving

Fig. 3. An illustration of the 5G testbed setup [17]. Green lines show the
path of TWAMP packets, and blue lines correspond to traffic load. A dashed
line indicate transmission over the air.

the packet at the probe source. From these time stamps we then
calculate OWD in the uplink (i.e., T2 - T1).

The testbed is located in an industrial facility with ap-
proximate dimensions of 30 x 7 meters. The placement and
direction of the antennas are such that a UE moving in the
facility may be both in and out-of-coverage.

VI. EVALUATION

A. Methodology

Periodic schemes and RoME-QCD: We evaluated QCD
agents using both periodic measurement schedules and
ROME-QCD. We used the parameters in equations (2) and (4)
in order to guarantee (γ, β,P0)-compliance. Recall here that
γ is the constraint on the average run length to false alarm,
and β is the constraint on the average detection delay.
Performance metrics: We wished to evaluate the following
performance metrics:

• Pre-change measurement frequency: We evaluated pre-
change measurement frequency by running the agent
on the pre-change distribution with no changes. We
estimated the frequency by E∞[N/tN ] ≈ 1/E∞[τ̂ ].

• Average run length to false alarm: We also estimated
the average run length to false alarm E∞[tN ]. We capped
run lengths to tN < 5γ and then forced a stop. This
biased the false alarm rate negatively, but all results still
showed that the ARL is significantly greater than γ.

• Worst case average detection delay: It is well-known
in QCD literature that whenever the stopping rule is a
threshold on the CUSUM statistic, the worst case detec-
tion delay (in terms of both post-change measurement
costs and physical time delay) occurs whenever ν = 0.
As such, we imposed a change immediately and evaluated
both E[tN ] = E0,p0

[tN ] and E[N ] = E0,p0
[N ].

B. Testbed experiments

We first evaluated our QCD schemes using the tesbed
described in Section V.
Data processing: To create proper measurement scenarios, we
first performed seven experiments where the measurement UE
was stationary, and the load was introduced through the second
UE using Iperf with an intensity ranging from 0 to 60 Mbps.
After this, another experiment was performed where no load
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Fig. 4. Percentiles of the OWD distributions for different loads.

was introduced but the measurement UE moved back and forth
in the curved corridor. For each experiment, the uplink OWD
values were measured for 250 seconds, with 50 ms intervals,
resulting in a total of 5 000 measurements each. Through these
measurements, we could estimate p∞ (which the agent has
access to) as well as the different distributions p0 (which it
does not) in the different measurement scenarios.

Armed with the data from the experiments, we estimated p∞
and p0 by using Gaussian kernel density estimation (KDE). A
choice of bandwidth is needed, and we heuristically set it to
σB = 0.4 ms as this showed a good balance of resistance
to measurement noise without information loss. Some key
percentiles of the distributions are presented in Figure 4.
Change scenarios: Any given change scenario is defined
by (1) the true post-change distribution p0, (2) the network
probe’s knowledge of the post-change distribution, character-
ized by the uncertainty set P0 and (3) the true pre-change
distribution p∞. For simplicity, we let the pre-change distribu-
tion be the same everywhere, that is, the KDE generated by the
stationary UE without load. Thus, we have E∞[Xn] = 5.11
ms in all change scenarios. The uncertainty set P0 was set
as a mean-shifted uncertainty set as described in Section
IV-D, where the mean threshold η varies between the different
change scenarios, and with the variance bound V = 100
(ms)2 everywhere, just to be sufficiently large. To ensure that
Assumption 1 is met, we imposed an additional constraint on
P0 that the distributions within are subgaussian. Assuming that
the distributions within P0 have a similar shape to p∞, we set
σZ = λ⋆σB . Here, λ⋆ was calculated as in equation (7), which
can be written explicitly when p∞ is a Gaussian KDE.

To evaluate and discuss different aspects of the robust QCD
algorithms, we studied the following four change scenarios:

• Small increase (SI): The systems has a small increase in
load, which the agent must detect. Here, we interpreted
this as the system going from no load at all, to a load
of 10 Mbps. Thus, p0 is a KDE, with mean E0,p0

[Xn] =
5.49 ms and we set η = 5.4 ms.

• Great increase (GI): The system has a great change in
load, which the agent is prepared to detect. Here, we
interpreted this as the system going from no load at all,

to a load of 50 Mbps. The average post-change OWD
was E0,p0 [Xn] = 7.66 ms and we set η = 7.0 ms.

• Over-increase (OI): The system has a great change in
load, but the agent is prepared to also detect a small
change in load. Combined with the two above cases, this
gives a good idea of the prize of robustness. The load
then changed from 0 Mbps to 50 Mbps, but the mean
threshold η was set to be the same as for the scenario
Small increase, that is E0,p0

[Xn] = 7.66 ms and η = 5.4
ms.

• Moving UE (MUE): For the final scenario, we kept the
load constant at 0 Mbps, but the UE started moving from
a stationary position to one where it moves back and forth
in a corridor. Here, we find E0,p0 [Xn] = 14.9 ms, and
we set η = 7.0 ms, the same as in the scenario GI.

Network probes and evaluation: We set (τ, S(0)) for the
periodic schedule network probes as in equation (2) and
(τ, S(0), S(1)) for the ROME-QCD network probes as in
equation (4). We did not see a natural way of setting the
parameter ξ, but found that ξ = 15 was useful in similar
experiments before.

For the experiment parameters, we set the delay constraint
β = 70 s and ARL constraint γ = 200β = 14 000 s. Rather
than evaluating the algorithms directly on the data, we eval-
uated them online with data from the estimated distributions,
allowing us to freely control elements of the experiments such
as pre- and post-change distribution or change time.

Presenting our results, we begin by illustrating how the
network probe with periodic schedules operate contrasted with
RoME-QCD. To do so, we have run an example episode for
both in the scenario “Small increase”. We set ν = 20 s for
both probes and illustrate when measurement were taken, what
their outcome was and how the CUSUM statistic evolved over
time. The example episodes are shown in Figure 5.

To see the sensitivity of the ARL constraint γ, we performed
experiments on the scenario SI where γ varied logarithmically
from β to 500β (β being the delay constraint). The average
measurement frequency and detection delay is found in Figure
6. The ARL is omitted to save space, but for all agents it is
close to the time limit 5γ in all experiments.

For each scenario in the subsection “Change scenarios”, we
evaluated both pre-change and post-change distribution, and
the robust method (with λ⋆ generated by solving equation (7))
was evaluated with both periodic measurement schedules and
ROME- QCD. The evaluation results are found in Table I.

Furthermore, to get a more nuanced view of the impact
of the post-change load, we evaluated the worst case average
detection delay for a number of different loads, increasing
from 10 Mbps to 60 Mbps in increments of 10 Mbps. We
evaluated these delays using both η = 5.4 ms and η = 7.0 ms.
Notably, the probe could not effectively detect changes when
the post-change load was 10 Mbps and the delay threshold
was η = 7.0 ms, as the post-change load was in this case
much smaller than η. We have thus excluded this data point
from the result for the sake of presentation. These delays are
found in Figure 7.
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Fig. 5. Example episode for network probe with periodic measurement schedules and RoME-QCD in the scenario SI, showing measurement outcomes and
CUSUM statistic as a function of time.
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Fig. 6. Measurement frequency and detection delay for robust detection agents
with periodic measurement schedules or ROME-QCD on testbed data for
different values of γ, with the scenario SI.

TABLE I
PERFORMANCE UNDER PERIODIC VS. ROME-QCD SCHEDULES.

Scenario Schedules Meas. frequency Delay ARL
SI Periodic 17.0 s−1 20.8 s 68 800 s
SI RoME-QCD 3.68 s−1 7.3 s 69 300 s
OI Periodic 17.0 s−1 2.36 s 68 500 s
OI RoME-QCD 3.68 s−1 1.14 s 69 300 s
GI Periodic 1.08 s−1 20.0 s 67 000 s
GI RoME-QCD 0.338 s−1 6.74 s 68 900 s

MUE Periodic 1.08 s−1 4.96 s 67 100 s
MUE RoME-QCD 0.339 s−1 9.53 s 68 900 s

C. Synthetic data - Gamma distributions

In order to evaluate the cost of robustness in a controlled
environment, we performed simulations on synthetic data.
Since our goal was to apply our methods to delay monitoring,
we investigated data generated by gamma distributions [19].
Gamma distributions, denoted by Γ(α, β) are defined by the
probability density function

p(x) =
βαxα−1

Γ(α)
exp(−βx) (8)

on the set [0,∞). Here α is the shape parameter and β is the
rate parameter, and Γ(α) is the gamma function identical to
(α − 1)! whenever α is a positive integer. The mean of the
gamma distribution is E[X] = α

β and its variance is V (X) =
α
β2 . For the pre-change distribution, we used p∞ ∼ Γ(2, 2).
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Fig. 7. Worst case average detection delay as a function of the post-change
load. Note the logarithmic scale on the y-axis, and that a data point is missing
in the upper two curves, which is explained in text.

The post-change distribution set was set to P0 = {p0 : p0 ∼
Γ(2, β), β ∈ [3, 10]}. The true distribution generating post-
change measurements, unknown to the agent, used β = 4,
while the least favorable distribution of P0 is p0 ∼ Γ(2, 3).

We evaluated both periodic schedules and ROME-QCD,
using the robust methods of Section IV. We compared them
both to each other as well as a benchmark method which
knows the true post-change distribution, in order to see the
cost of using a robust set. To show the qualitative results as a
function of γ, we fixed β = 1 and let γ vary from 1 to 500
in logarithmic steps. The pre-change measurement frequency
and delay of both measurement schedules is shown in Figure
8.

D. Discussion

The main conclusion drawn from the results, particularly
Table I, is that ROME-QCD is able to significantly reduce
measurement overhead for network probes, compared to pre-
vious robust approaches with periodic measurements. It also
does so while maintaining as good or better detection delay
and false alarm rate. As expected, Figures 6 and 8 show that
whenever the false alarm rate constraint γ grows, ROME-
QCD significantly outperform periodic measurement schemes.
However, in the scenario MUE, the delay of ROME-QCD
is somewhat worse compared to periodic measurements. We
attribute this to the pre- and post-change distributions having
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Fig. 8. Measurement frequency and detection delay for robust detection agents with periodic measurement schedules or ROME-QCD.

wildly different shapes, making it difficult to leave the slow
measurement regime Sn ≤ S(1).

In Figure 5 we can get an idea of why crisis mode schedules
are so effective. In terms of time, they can measure consider-
ably less frequently before the change. After the change, they
let the CUSUM statistic jump nearly vertically once suspicions
of a change having occurred become large enough.

The different load distributions in Figure 7 show that the
delay falls of quickly in all cases from 10 Mbps and 20
Mbps. The marginal decrease afterwards is diminishing. This
suggests that even a small increase in the mean threshold
could potentially have a great effect on measurement costs and
monitoring performance. Furthermore, ROME-QCD consis-
tently outperforms periodic measurement schedules in terms
of delay, on all loads. Note that the results from the setup
40 Mbps are less reliable, as Figure 4 suggests that this
setup is contaminated. This does not, however, affect any of
our conclusions.

As Figure 8 shows, along with comparing the scenar-
ios Over-increase and Great increase in Table I, there is a
significant performance drop when using a least favorable
distribution considerably different from the real distribution.
This is well-known as the price of robustness and can be quite
high. Currently, this issue can only be resolved by reducing
the size of the uncertainty set.

While only OWD measurements were considered in these
experiments, ROME-QCD extends very well to any metric
which correlates positively or negatively with performance.

VII. CONCLUSION

In 5G networks, it is crucial for network probes to effi-
ciently monitor and detect unknown changes in performance.
In this paper, we have presented a statistical framework for
approaching this monitoring task. Combining the frameworks
of measurement-efficient quickest change detection and robust
change point detection, we have shown how these interact and
allow for more efficient and realistic network probes compared
to previous approaches.

Within this framework, we have analyzed the adaptive
measurement schedule called ROME-QCD and shown its
superiority compared to classical periodic measurement sched-
ules. We have proven our results and verified them, both using
synthetic data and using data from a 5G testbed, on scenarios
of load increases and changes in the user’s behavioral patterns.

For future work, one interesting open question is what
happens to measurement schedules as the assumption of
independent measurements is relaxed. Indeed, in this case
the magnitude of the interdependence between measurements
may depend on the interval between them. We also aim to
investigate the performance of ROME-QCD in a real-world
deployment.
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APPENDIX A
PROOFS

A. Proof of Lemma 1

By definition of N and nν , Eν,p0
[(N − ν)+] depends only

on measurement outcomes {Xi}i≥1. But, conditioned on Gnν
,

it only depends on measurement outcomes {Xi}i>nν . Further-
more, these are distributed the same regardless of where they
take place in time, making them independent on {τi}i>nν

.
This proves statement (i).

For statement (ii), the proof logic of Lemma 1 in [6] applies
exactly.

B. Proof of Theorem 1

From the proof of Theorem 2 in [6], we know that the
Theorem holds already for the least favorable distribution p0,
that is, we can construct a 3-tuple (τ, S(0), S(1)) such that the
corresponding crisis mode agent is (γ, β)-compliant and has
E∞[τ̂ ] ≥ τc with τc independent of β. It thus suffices to show
that, with the same choice of (τ, S(0), S(1)), such an agent is
also (γ, β,P0)-compliant under Assumption 1, which in turn
requires showing E[tN ] ≤ β.

Recall that Zi = log( p0(Xi)
p∞(Xi)

), and by this, it follows that
Eν,p0

[Zi] = D(p0||p∞) − D(p0||p0) for any i > nν . Fur-
thermore, by definition of stochastic boundedness, it follows
that Eν,p0 [Zi] ≥ I . Note that, for any ν and p0 ∈ P0, we
can for a crisis mode agent rewrite Eν,p0 [(tN − ν)+|Fν ] =
τ
∑∞

n=nν+1 Pν,p0
(Sn ≤ S(1))Pν,p0

(N > n). Introducing
∆Z := Z − Eν,p0

[Z] and ∆n := n− nν , we then write

Eν,p0

[
(tN − ν)+|Gnν

]
≤ τ

∞∑
n=nν+1

Pν,p0
(Sn ≤ S(1))

≤ τ

∞∑
n=nν+1

Pν,p0

(
n∑

i=nν+1

Zi ≤ S(1)

)

= τ

∞∑
n=nν+1

Pν,p0

(
n∑

i=nν+1

∆Z ≤ S(1) −∆nEν,p0
[Zi]

)

≤ τ

∞∑
n=nν+1

Pν,p0

(
n∑

i=nν+1

∆Z ≤ S(1) −∆nI

)

The last inequality follows from Eν,p0
[Zi] ≥ I , as discussed

above. Now, by the proof of Theorem 2 in [6], it follows that
by constructing an agent as if p0 was the true post-change
distribution, it will also fulfill Ep0

[
tN
]
≤ β, by choosing

τ = β
(1− exp(−I

2
/2σ2

Z))

exp(S(1)I/σ2
Z)

S(0) = log

(
γ

τ(1− exp(−S(1)))

)
.

Thus, we can construct a (γ, β,P0)-compliant agent with
E∞[τ̂ ] ≥ τc. It then remains to prove the upper bound on
post-change measurement cost E[N ].

First, recall by Lemma 1 that we do not need to consider
the measurement strategy, and can determine the post-change
measurement cost by studying a periodic CUSUM agent with
the same value of S(0). Note that I and σZ does not depend
on γ or β, and so we can re-write

S(0) = log

(
γ

β

)
+ c

where c does not depend on γ or β. Since the set P0 is
stochastically bounded with respect to p∞, the threshold rule
N = min{n : Sn > S(0)} has a post-change measurement
cost upper bounded as

E[N ] ≤ (1 + o(1))
S(0)

I

as γ → ∞, by Lemma 2.1 in [14]. As such, fixing β, we see
that

E[N ] ≤ (1 + o(1))
log(γ/β) + c

I
= (I

−1
+ o(1)) log(γ/β)

as γ → ∞, which concludes the proof.



APPENDIX B
ETHICAL CONSIDERATIONS

The OWD data in this work is generated in an in-house
testbed rather than from any real user data. Furthermore, the
description and use of this testbed has been approved by its
owner. As such, this work does not raise any ethical issues.

There was no use of Generative AI in the creation of this
work.


