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Abstract—Broadband network access is typically managed by
Broadband Network Gateways (BNGs), which can be imple-
mented as a Virtual Network Function (VNF). This paradigm
shift is caused by network softwarization and allows the BNG
to be deployed on commodity hardware, significantly reducing
capital expenditure (CAPEX). But packet processing operations
and complex Quality of Service (QoS) policies make it difficult to
provide low and predictable latency at scale for a large number
of subscribers. To improve performance, parallel queues at the
Network Interface Card (NIC) and multiple dedicated CPU cores
for packet processing are used, processing 50 million packets
per second on commodity x86 hardware. How to guarantee
latency, however, remains unclear. In this study, we conducted
testbed-based experiments on a VPP/DPDK implementation of
the BNG to benchmark its performance. Our findings reveal
how latency and its variation increase with background traffic,
and we analyze a parameter that contributes to a trade-off
between throughput and latency. We also examine the ability
of the multi-core architecture to guarantee latency, at a cost of
reduced port utilization. These observations influence the design
goal of isolating subscriber traffic and highlight the suitability
of software BNG for guaranteeing performance.

Index Terms—Performance measurements, benchmarking,
Quality of Service, DPDK, VPP, BNG.

I. INTRODUCTION

Residential and industrial internet access is typically de-
livered through fixed broadband access networks. To provide
network connectivity, services such as Authentication, Autho-
rization, and Accounting (AAA), packet routing and forward-
ing, and Quality of Service (QoS) enforcement are commonly
implemented by a Broadband Network Gateway (BNG), a
key component of an operator’s network. Broadband operators
accommodate a substantial number of subscribers, ranging
from 5000 to 35000 subscribers, with traffic rates between 20
and 400 Gbps [1]. To support these rates, a conventional BNG
implementation uses high-performance hardware, making it
costly to implement and difficult to upgrade to support new
functionality. Using the recent trend of softwarization, the
BNG can also be implemented in software as a Virtual
Network Function (VNF), making it deployable on commodity
hardware, typically based on x86 or ARM CPU architectures.

While the VNF implementation has significant benefits in
flexibility, implementing it at scale, at low and predictable
latency in software on commodity hardware is challenging due
to the high computational load placed on the BNG [2].

This high computational load on the BNG derives from the
QoS policies used to manage subscriber traffic. Concurrent
access to network services such as Voice-over-IP (VoIP), in-
ternet gaming or video streaming degrades connection quality
due to diverse and sometimes conflicting traffic requirements,
including throughput and delay. Specifically, access networks
enforce QoS policies to meet two requirements: isolation
of traffic classes and sharing of unused capacity [3]. To
isolate incoming traffic, packets are classified and put into
different queues, typically between four and eight queues per
subscriber [4]. Subsequently, a packet scheduling algorithm
enforces that the traffic rate adheres to either a peak or guar-
anteed rate, according to specified service level agreements
(SLAs) or network requirements. The scheduling algorithm
further prioritizes between the different traffic classes, ensuring
that critical applications receive preferential treatment when
contending for network resources. This dual functionality
allocates and manages network capacity to balance the needs
of various traffic classes by providing throughput and latency
guarantees.

A VNF implementation of this highly complex mechanism
is challenging due to the large number of queues and the
significant amount of state [2]. To address these challenges
and enhance performance of the QoS algorithm, several ap-
proaches have been explored, including: 1) hardware acceler-
ation on FPGAs [1] or Network Interface Cards (NICs) [5];
2) adapting for multi-core environments [6]; 3) and software
acceleration via DPDK [7]. For the pure software BNG, further
performance scaling in commodity servers relies on using
multiple cores in parallel to process workload.

An implementation of the software BNG is proposed in [8],
leveraging VPP and DPDK for packet processing, and achiev-
ing approximately 122000 queues at 710 Gbps. But an in-
depth performance evaluation of the system’s capability to
isolate traffic remains missing. We close this gap by char-
acterizing latency and latency variation of a software BNG.978-3-903176-64-5 © 2024 European Union



In particular, we answer the following question: What is the
impact of the Quality of Service algorithm of a software BNG
on delay-critical traffic? To address this question, we built a
testbed and conducted a series of measurements to benchmark
several BNG Key Performance Indicator (KPI).

The experiments conducted reveal the potential impact of
background traffic on the latency of delay-critical traffic.
Multiple instances of the algorithm can protect the delay of
specific traffic classes at a cost of sub-optimal port utilization.
This establishes a connection between traffic isolation and
work conservation. Consequently, a balance needs to be struck
between optimizing latency and efficiently utilizing the port’s
capacity, highlighting the need for further investigation and
optimization in this area.

This paper is structured as follows. In Section II, we present
the background on access network operator requirements
and QoS models. Section III presents the evaluated target.
Section IV shows the results of the experiments. Section V
presents the answer to the research question. Section VI shows
how our work relates to other research work. Section VII
concludes our paper.

II. BACKGROUND

In this section, we present the design of broadband access
networks with a focus on the design of the BNG and the QoS
model typically applied in these networks.

Several technologies need to work together in order to
provide internet access to subscribers. Typically, a subscribers’
home gateway establishes a connection to the core network
via media like copper or fiber. The BNG terminates the
access line, authenticating subscribers and forwarding their
traffic to core and private networks [9]. The functionality
and deployment of a BNG has been described in the BBF
TR-178 [10]. More recently, and accompanying the trend of
Software Defined Networking (SDN), the control and packet
forwarding functions of the BNG were disaggregated. The
BBF TR-459 [9] and the RFC 8772 [11] is a specification for
the disaggregated BNG (DBNG), listing the necessary control
interfaces between the two components.

We focus on the packet forwarding component of a BNG.
Different operations are applied to the packets depending
on the direction of the traffic, either upstream (from the
subscribers to the core), or downstream (core to subscribers).
Subscriber authentication is done by forwarding specific pack-
ets, such as PPP Discovery packets, to the control plane. After
the subscriber is authenticated, and to enable the operator to
identify each subscriber’s traffic, header encapsulations such
as VLAN or PPP are used, which need to be either added in
the downstream or removed in the upstream. Other functions
applied are Access Control Lists (ACL) for verifying incoming
traffic is legitimate, accounting of subscriber usage of data
plans, and IGMP/ MLD replication for IPTV Multicast. The
BNG functionality is depicted in Figure 1.

The BNG also applies QoS functions to police and rate-
limit the packets in both directions. The volume of traffic in
access networks is asymmetric, with the downstream direction

being the larger portion, corresponding to the different services
accessed by the different users [12]. While some QoS is
applied in both directions, the differences in volume and access
patterns simplify the functionality applied in the upstream
direction [1]. Traffic in the downstream direction is due to
the services conventionally accessed by residential broadband
subscribers, which include voice, video, and data services, col-
lectively known as triple play [13]. Recently, service offerings
have expanded to up to eight different services to include video
game streaming or private Virtual Private Networks (VPN), as
defined in [4].

These services require varying and sometimes conflicting
QoS goals, such as throughput, latency, or packet loss. Be-
yond individual services, different traffic demands between
subscribers may increase latency when sharing the access
network [1]. Therefore, two distinct design goals for broad-
band access networks’ QoS are identified: 1) Traffic class
isolation: different traffic classes must be isolated from each
other; 2) Work conservation: low-priority traffic classes may
reuse unused capacity from higher-priority ones. To achieve
these objectives, traffic from different subscribers and different
services needs to be properly treated. To isolate traffic classes,
the BNG classifies incoming traffic into different service
classes and puts it into distinct queues. The mapping between
service type and destination queue ID depends on packet
header fields such as the VLAN PCP, IP TOS or DSCP,
used by a classifier. A queue management algorithm, such as
Random Early Drop (RED) or Proportional Integral controller
Enhanced (PIE), monitors the queue’s state and selectively
drops packets to prevent congestion [14].

Hierarchical Quality-of-Service (HQoS) is a mechanism
that maintains rate limits and transmission priorities for these
queues. It organizes schedulers into levels, such as flow-group,
subscriber, or network aggregation, applying QoS policies
according to the level [2]. These levels consist of three types
of nodes: leaf, inner, and root nodes, each with specified
Committed Information Rate (CIR) and Peak Information Rate
(PIR). Leaf schedulers directly interface with the queues, rep-
resenting a specific traffic class, and the scheduling discipline
is typically configured as strict priority (SP) mode or Weighted
Round Robin (WRR). Higher scheduler levels represent traffic
aggregates, e.g. subscriber or data-center tenant traffic. Finally,
the root scheduler typically represents the physical output
port. Packets are selected for transmission based on the token-
bucket status for the different traffic classes, and srTCM [15]
and drTCM [16] are used to enforce rate and burstiness
limits. The structure of the HQoS mechanism is illustrated
in Figure 2.

A scheduling algorithm is responsible to serve the queues
according to the rates allocated to the different users and the
service classes. A specific queue is selected and the scheduler
determines whether packets are eligible for transmission. Each
queue is fed to a scheduler in Level 0, and the scheduling
discipline is typically configured as strict priority (SP) mode
or Weighted Round Robin (WRR).

Research on hierarchical schedulers has resulted in a wide
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Fig. 2: Illustration of the HQoS mechanism.

array of different algorithms with several design goals and
complexity tradeoffs. An ideal formulation of HQoS is real-
ized by the Hierarchical Generalized Processor Sharing (H-
GPS) [17]. H-GPS has been shown to not be implementable
due to being based on a hypothetical fluid model, where
in reality the scheduler can only support one session at a
time [17]. Several real-world approximations of H-GPS have
been proposed, including Hierarchical Packet Fair Queuing
(H-PFQ) [17] or the Multiclass WRR [18]. In practice, these
algorithms are typically evaluated by their implementation
complexity, worst-case fairness, and delay bounds.

With the HQoS mechanism being adopted in the access
network to fulfill the tasks of traffic shaping and rate limiting,
ensuring system performance is critical. This is challenging
due to the rate demands of up to 400 Gbps and large number of
queues for all subscribers. These factors impose requirements
in packet processing rate, available memory, and memory
bandwidth. To execute this functionality on commodity hard-
ware, a solution is necessary that addresses these requirements.

III. SOFTWARE-ACCELERATED BNG

In this section, we describe the software implementation of
the BNG, originally proposed in [8]. We present the design
of the system, highlighting the design choices that make the
framework suitable for fast packet processing. Additionally we
discuss the mechanisms used for scaling the system to multiple
cores.

A. BNG Software Architecture

The software BNG comprises two distinct components: 1) a
header-processing component, which handles packet match-
ing, forwarding, and classification, and 2) an HQoS block,
responsible for queuing, shaping, and scheduling the packets.
The downstream pipeline is notably more complex than the
upstream pipeline, primarily since HQoS computation involves
writing and accessing multiple data structures. Keeping in
line with asymmetric functional pipelines, one CPU core
is exclusively dedicated to the upstream packet processing
tasks, while the downstream path is split across two CPUs
handling packet processing and HQoS separately. We refer
to the threads as PPUS , PPDS and HQoS, which together
form a BNG instance. Separating these processes into distinct
CPU cores ensures isolated access to Layer 1 and Layer 2
(if not running on the same physical core) cache memories.
This architectural decision is key in improving throughput and
latency by keeping the instruction and data caches warm with
data relevant to each process [19].

The threads are implemented using VPP (Vector Packet
Processing) [20], a high-speed packet processing framework.
It achieves high speed by combining DPDK and vector
processing of packets. Vector processing aggregates packets
into a “vector” and applies a set of processing tasks to that
vector, thereby improving instruction cache efficiency [20].
Additionally, VPP prefetches data to reduce the impact of data
cache misses. Beyond these throughput-improvement features,
VPP also provides a comprehensive networking stack that can



be extended to support functionalities such as PPPoE header
processing and policers through the development of plugins.

Packet I/O is based on SR-IOV, which allows the creation
of Virtual Functions (VF) on top of a PCIe Physical Function
(PF) to parallelize access to a device. The PP threads receive
packets from the RxQ by polling and applying the respective
header-processing functions. After packet processing in the
PPDS pipeline, outgoing packets are classified with HQoS-
relevant metadata and placed on a ring buffer. The classifier
reads the packet header and writes metadata necessary for the
HQoS thread. This metadata refers to the placement of each
packet in the scheduler. The functionality and design of this
structure is represented in Figure 3.

NIC

CPU core 2 - DSCPU core 1 - DS

VF 0
PF 0

CPU core 0 - US

RxQ TxQ
VF 1

RxQ TxQ

Fig. 3: Functional diagram of the software BNG [8].

The HQoS thread retrieves a batch of packets from the
ring buffer and the DPDK QoS framework is used to execute
the HQoS process [7]. A batch of packets is prepared to
enqueue packets in the scheduler, with each packet directed
to the destination queue identified by the metadata written
to the packet header. This metadata refers to the IDs of the
physical port, subport, traffic class and queue within the traffic
class [7]. Reading these data structures requires accessing the
DPDK mbuf. For performance reasons, the packet data and
the queue position must be present in the CPU Layer 1 and
Layer 2 cache, so prefetching is used to populate the cache. As
prefetching operations incur some latency, other instructions
are executed in parallel in a pipeline. This prefetching pipeline
enhances the enqueueing process cache efficiency. If the queue
has enough available capacity, packets are appended to the
queue, and a bitmap is written to notify the dequeue process
to read from those queues.

The subsequent dequeue stage uses a parallel compute
engine, which concurrently schedules multiple queues while
ensuring that the necessary data structures are present in the
higher cache levels. Packets are selected for transmission
if the token buckets of the different levels have sufficient
credits. Note that only the pointer to the packet is present
in the previously described operations, while the packet data
itself is kept in Layer 3 cache. Despite these optimizations,
the system still behaves as a bottleneck due to the various
data accesses and required computations. To mitigate this
bottleneck, one strategy is to horizontally scale the processing

workload across multiple CPU cores, which we explore in the
following section.

TABLE I: DPDK port HQoS scheduler model [7].

Level Name Lmax

3 Port 1
2 Subport 8
1 Pipe 4096
0 Traffic class 13

Queue 16

B. Multi-Core Scaling

Supporting e.g. 35000 subscribers, each with 8 traffic
classes, would require 280000 queues. This would result in
a very large memory footprint that is not feasible to achieve
in one x86 CPU core. To address this limitation, the process
is scaled horizontally to other CPU cores by introducing
additional parallel instances of the BNG [8].

In order to scale packet I/O in servers equipped with com-
modity hardware, two solutions are used, SR-IOV and multi-
queue NICs. Multi-queue NICs can create multiple hardware
receive (Rx) and transmit (Tx) queues, improving throughput
by processing packets across parallel CPU cores [21]. These
techniques are often combined to create multi-queue VFs.
Incoming packets are distributed to the different VFs and
queues by the NIC by using a packet forwarding technique
such as pure MAC switching, Receive Side Scaling (RSS), or
advanced hardware switch offloads.

Each polling thread retrieves packets from the queues,
handles packet headers, and directs packets to their designated
HQoS instance. Each HQoS instance independently manages
the enqueueing and dequeueing of packets, operating in iso-
lation from other instances. The PF capacity is statically
allocated to each instance, as the state of the HQoS process is
not shared between threads. This would require implementing
concurrent access to the queue and scheduler structures, via
locking mechanisms or utilizing lock-free data structures, both
of which adversely impact performance [7]. This challenge is
illustrated in Figure 4a, where multiple threads, represented
by multiple paths, are accessing the queuing structure, active
bitmaps and token bucket data [7]. The lack of shared state
between the HQoS threads highlights the primary difficulty
with the current solution: while scaling to more CPUs can
improve throughput, the lack of synchronization between the
threads will lead to sub-optimal use of the port’s data rate [8].

The evaluation present in reference [8] offers insights into
the achievable system performance by measuring the max-
imum forwarding rate that the system can sustain with a
Packet Drop Rate (PDR) of 0.001%. But this PDR test uses
an idealized workload that does not accurately challenge the
system’s capability to enforce QoS. Specifically, the workload
distributes traffic equally across instances and queues; failing
to capture scenarios where the port capacity is not optimally
utilized [8]. Hence, an in-depth performance evaluation of the
system’s capability to accurately perform Quality of Service
(QoS) remains missing.
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(b) Independent HQoS execution model. This paper evaluates
an implementation of this model.

Fig. 4: Design of the multi-core HQoS model. The figures
represent a set of processors accessing a hierarchical scheduler,
indicated by the dotted lines and different colors.

IV. EVALUATION

Our experiments show the following:

• Impact of background traffic: background traffic im-
pacts the latency of delay-critical traffic (Section IV-B);

• Suboptimal use of port capacity: uneven load of the
BNG instances leads to unused capacity (Section IV-C1).

A. Experimental Setup

Physical Testbed The testbed comprises one x86 server
as the Device Under Test (DUT) using Ubuntu 22.04, which
is equipped with 2x Intel Xeon Gold 6238R CPUs clocked
at 2.2 GHz, 8x32 GB DDR4 RAM operating at 2.6 GHz,
and an Intel E810-CQDA2 2x100 Gbps NIC attached to
the same NUMA core where the respective BNG instances
run, avoiding cross-NUMA performance issues. We tuned
BIOS settings [23], including CPU core isolation for running
VPP/DPDK applications. Note that in the related work [8], the
DUT was equipped with 2x Intel Xeon Gold 6438N CPUs (for

differences in CPU see Table II 1). We manually configured
CPU power states using power.py, setting the scaling governor
to performance and enabling a turbo frequency of 3 GHz, the
maximum the used system allows.

TABLE II: CPUs used for evaluation in this paper and the
original one.

Specification 6238R – DUT 6438N – [8]

Number of cores 28 32
Max. turbo frequency 4.00 GHz 3.60 GHz

L3 Cache memory 38.5 MB 60 MB

We use an IXIA Ixload hardware traffic generator connected
to the NIC of the DUT with a 100 Gbps fiber cable, providing
latency measurements with nanosecond time precision. We
measured IXIA to DUT delay of 24 µs which was subtracted
from the results present in the following sections.

Key Performance Indicators: We measure the maxi-
mum sustained throughput, latency and jitter. Latency is
defined as the difference between the packet transmit time
from the packet arrival time, measured with a a cut-through
method [24], and the minimum, average and maximum latency
values are reported. Jitter refers to the latency variation is ob-
tained by the difference between the latency of two consecutive
packets.

Application configuration: In our measurements, we eval-
uate the performance of an IPoE based BNG, where a VPP
Layer 3 forwarding function forwards the packets, executed
in the PPDS threads. We used VPP version v23.10 and
DPDK v23.07. DPDK’s rte sched library was based on the
version used in [8], which adds one scheduling hierarchy
level when compared to the version in upstream DPDK. We
have created eight VFs from one PF, each with a Rx/Tx
queue pair. One BNG instance, consisting of one PPDS and
one HQoS thread, is attached to two VFs, with a total of
four BNG instances created. One 100 Gbps PF was split
into four different VFs, resulting in a shaper configuration
of 25 Gbps per VF. The 25 Gbps capacity is equally divided
equally by all pipes and traffic classes, resulting in a peak
shaping rate of 6.1 Mbps for a pipe and 1.5 Mbps for
a TC. Contrary to the original implementation we did not
consider the upstream packet processing thread, as we are
focused on benchmarking the performance of the system while
applying QoS for downstream packets. Moreover, to study the
application in isolation, the BNG instances are run inside a
VPP process, as opposed to creating multiple containers. To
improve throughput between NIC and PPDS , the maximum of
4096 descriptors was configured in the NIC. To reduce latency
for each individual traffic class, the queue sizes for each
individual traffic class is 8 packets long. Finally, the queue
size between the processes is 512 packets long, corresponding
to two times the maximum size of the VPP vector size [20].

Workload parameters: To evaluate the impact of back-
ground traffic on latency and throughput, we conducted ex-

1https://ark.intel.com/content/www/us/en/ark/compare.html?productIds=
232397,199345



periments with background and VoIP-like traffic. All packets
generated are IP/UDP, with the used packet sizes and packet
rates being specified in the following sections. Each PPDS

instance has a MAC address, and we use the destination IP
address to identify a single user. Background traffic is created
with 4094 users, and VoIP-like traffic is directed to 200 users.
We use the first two IP addresses for the network and the VPP
instance IP address, hence we do not create traffic destined
to the maximum of 4096 users per instance. Furthermore, all
users have up to four traffic classes, identified based on the
TOS field.

Table III describes the chosen configuration of the VPP/
DPDK parameters.

TABLE III: VPP/ DPDK scheduler configuration

Parameter Setting Value

Scheduler

Port Line rate 100 Gbps
Subport 25 Gbps

Subport Tc 25 Gbps
Pipe PIR 6.1 Mbps

Tc PIR 1.5 Mbps

Profiles
# Subport profiles 1

# Pipe profiles 4096
# Tc p/ pipe 4

Queue sizes
Tc queue size 8 Packets

Ring buffer 512 packets
Rx/Tx descriptors 4096 packets

Calibration We measured the maximum Non-Drop Rate
(NDR) to be 12 Mpps for 576 B packets on a single core.

Dataset The dataset with the experiments is available on
github 2.

B. Single-core performance

In this section, we present the results of the experiments
done with a BNG configuration consisting of one PPDS and
one HQoS thread.

1) Comparison to the state of the art: We use the evaluation
present in [1] to provide a point of comparison. We aim to
characterize the performance of latency-critical traffic under
various amounts of traffic load. For this test we disabled
batching of packets in the HQoS thread. As in [1], 10.000
packets of size 178 Byte marked with TOS=0 are created at a
rate of 2.000 packets/s, representing the latency-critical traffic
with VoIP-like packets. The background traffic is modeled with
IMIX packets (64 B, weight: 7; 594 B: weight 4; 1500 B:
weight 1), and the target background traffic data rates of 0,
1 and 9 Gbps were created, using the TOS 1 and 2 fields
of the header. Two main factors distinguish our evaluation
from the one in [1]. First, we are testing an IPoE-based
BNG, while Kundel et al. experimented with a PPPoE-based
BNG. The added packet processing and header fields in the
packet would add a constant load to all packets in the PPDS

thread, but HQoS processing remains the same. Second, as
the DPDK QoS scheduler is optimized for many queues [7],
the performance of a single queue, as measured in [1] would
not result in proper values. With this in mind, and in order

2https://github.com/rubensfig/research experiments/tree/tma paper

to apply the same rate to the BNG as used in [1], we chose
to measure the latency of 200 queues and average the overall
delay.

Table IV presents the results of this experiment. For all
scenarios, no packet loss is visible. As for the latency, in
the best-case scenario with no background load, the minimum
latency of the traffic class is higher than the latency of the
hardware PPPoE BNG, but the delay variation is relatively low.
As expected for the software IPoE, with increased background
load, all latency metrics increase. When the background load
increases to 9 Gbps, a noticeable increase of all metrics
is visible. The increase in latency due to the increase in
background load is consistent with the reported results from
FlowValve [25]. The increased latency in the DPDK scheduler
is due to the increased number of parallel queues, increasing
the number of destination queues and token structures that
must be loaded into memory.

Takeaway 1: Increasing background traffic affects the la-
tency and latency variation of delay-critical traffic.

2) Batch size: With this experiment, we aim to characterize
the latency of the system with different batch sizes feeding the
HQoS process. With the batch configuration of the previous
experiment, increasing the load beyond 4 Mpps to the HQoS
will result in packet drops. To ensure that the batch process
remains constant, we model the background traffic with fix-
sized 512 Byte packets.

Figure 5 shows the result of the experiment. For emphasis,
we plot the average and minimum latency in Figure 5a and
the box-and-whiskers plot of the maximum latency variation
in Figure 5b. With the increase of batch size from 0, there is
a small decrease in the average latency, but maximum latency
variation increases.

Unlike the adaptive batch parameter in the PPDS thread,
the batch parameter we consider in this experiment is not
adaptive to the incoming traffic load. While providing a simple
mechanism to increase throughput, this experiment shows the
necessity of tuning this parameter for the QoS characteristics.

Takeaway 2: The HQoS may be tuned for throughput,
latency or latency variation using the batch size parameter.

C. Multi-core performance

In this section, we assess the performance of multiple
instances of BNG. We create four instances using in total four
PPDS and four HQoS threads.

1) Use of port capacity: In this experiment, we illustrate
the sub-optimal utilization of port capacity in a multi-core
HQoS setup. The goal of this experiment is to demonstrate
the impact of non-uniform traffic distribution on the utilization
of port capacity. To achieve this, we examine two scenarios.
1) 4 Threads: All threads are equally utilized. 2) 2 Threads:
We only generate traffic towards two threads, while the other
remain unutilized. We use throughput as performance metric.

Figure 6 shows the result of the experiment. As antici-
pated, the 4 threads scenario demonstrates performance close
to line rate, with degradation starting when the maximum
transmission capacity is reached. In the 2 threads scenario,



TABLE IV: Performance of the VPP/ DPDK BNG for 178 Byte probe packets. For reference we included the results from
the related work [1].

Background Minimum Maximum Average Average
Load BNG # Packets Loss (%) latency (µs) latency (µs) latency (µs) latency variation (µs)

0 Gbps Software IPoE 10000 0 7.45 25.76 8.15 0.38
Hardware PPPoE 10000 0 2.02 12.85 7.24 3.00

1 Gbps Software IPoE 10000 0 7.35 24.85 10.48 1.82
Hardware PPPoE 10000 0 2.01 12.76 7.39 3.00

9 Gbps Software IPoE 10000 0 20.03 105.5 31.09 59.06
Hardware PPPoE 10000 0 2.01 14.47 7.34 3.00
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(b) Effect of batch size in the maximum latency varia-
tion of the VoIP traffic. We plot the box-and-whiskers
value of the five experimental runs, showing the median
and percentiles of the results.

Fig. 5: Effect of batch sizes in latency and latency variation
of the VoIP traffic.

two effects can be observed. First, the unused capacity from
the first thread is not distributed to the other threads processing
traffic, leading to an effective maximum port capacity of 50
Gbps. This is caused by the lack of shaper synchronization,
limiting each thread to the pre-configured maximum share
with no possibility to temporarily borrow credits from the
non-utilized threads. Second, increasing the offered load to
the system beyond 50 Gbps will drive the instance into an
overload situation, causing packet drops and degrading overall
performance.
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Fig. 6: Sub-optimal utilization of port bandwidth. We plot the
95% CI for all experiments, but the bar is too narrow to be
visible.

Takeaway 3: The lack of a global scheduling tree results
in sub-optimal utilization of port capacity, breaking work
conservation.

2) Traffic isolation between instances: In this section, we
show how scaling BNGs instances keeps the latency of the
different instances isolated. We demonstrate the impact of
non-uniform traffic distribution for different instances of the
BNG on the latency. We create a ‘uniform’ and ‘non-uniform’
scenarios for workload. In this case, a 50 Gbps rate was fixed
and distributed to each instance. In the ‘uniform’ scenario,
all were transmitting 12.5 Gbps, and for the ‘non-uniform’
distribution, the first instance sends 8 Gbps and the last sends
16 Gbps.

Figure 7 shows the result of the experiment. We demonstrate
that sending high-demand flows to a specific instance does not
affect the delay of the other instances. Figures 7b and 7c plot



the minimum, average and maximum latency. The extremely
high values of maximum latency is attributed to packet loss
in the DUT of about 1.2% for the uniform case, and 1.8%
for the non-uniform case in the PPDS threads. The difference
in packet loss must be further investigated, as for the two
experiments is not explained, as the packet loss was not
observed in the previous experiments.

Takeaway 4: Pinning high-volume traffic on specific in-
stances is a viable strategy to protect the latency of traffic
on other instances.

V. DISCUSSION

We are now able to answer our original question: What is
the impact of the Quality of Service algorithm of a software
BNG on delay-critical traffic? This impact is that the latency of
delay-critical traffic increases with background traffic, which
violates the BNG design requirement of traffic isolation.

This observation impacts the functionality of the system to
provide performance guarantees. First, due to the impact of
background traffic in the latency of delay-critical traffic, han-
dling traffic with different requirements from multiple users
in the same instance might violate the latency guarantees of
the different users. Second, the batching mechanism used for
improving throughput has a negative impact on the latency and
latency variation, which are among the most commonly cited
QoS metrics for VoIP [26]. An HQoS process that is handling
delay-critical traffic may be optimized for a throughput or
latency scenario, but a solution that addresses all use cases
is missing.

The parallel instances of the BNG execute the HQoS
algorithm independently, and higher traffic demands in one
instance does not affect the others. Hence, these observations
motivate a mechanism that distributes traffic according to their
QoS requirements. A traffic distribution method must ensure
load balancing between instances, as the independent calcu-
lation of the HQoS potentially disrupts work conservation,
resulting in decreased use of the port capacity. Moreover, the
multi-queue NIC must also manage its queues, and the effect
of the NIC-level transmission scheduling functionality in the
BNG KPI is still unclear.

Therefore, we propose the following enhancements to the
software BNG as future work:

• Implementing an adaptive batching mechanism for the
HQoS process;

• Investigating the NIC-level QoS functionality;
• Developing a QoS aware flow distribution method;
• Extending the DPDK QoS framework to facilitate multi-

threaded execution.
We acknowledge the threats to validity of our study. The

comparative study of software DUT and the Tofino/FPGA [1]
was conducted with a different header modification function-
ality. Specifically, our BNG processes IPoE traffic, while the
Tofino/FPGA is based on PPPoE. The complexity of header
operations differs between these two scenarios, where the
PPPoE is the more complex workflow. We expect that this
difference would increase the latency equally for all packets,

but the change of performance was not studied in this paper.
While the change in performance for the Intel Tofino should
be minimal, the change in performance for the x86-based
software DUT is unclear. While we still find that our study
was valid, any comparative analysis between the two systems
must be analysed with this information.

Another limitation of our study is the unexplored variations
in scheduler rate configuration, WRR schedulers or AQM
methods. These unexplored aspects could have implications for
the system performance, and should be investigated in future
studies.

VI. RELATED WORK

Many academic and industry studies have been exploring
the design of BNG and their execution models. In this section,
we analyze the existing literature for performance evaluation
methodologies of the BNG, and for proposals to improve the
HQoS performance.

OpenBNG [1] executes the BNG in an accelerated en-
vironment using programmable hardware accelerators. This
approach splits the functionality in a heterogeneous execution
environment, where packet processing is executed in P4 tar-
gets while an FPGA runs the HQoS scheduler. The FPGA
is necessary to address the shallow buffers of the Tofino
ASIC, which limits the space available for implementing
queues. They presented a comprehensive latency and jitter
characterization of their system. We adopted their evaluation
methodology to evaluate the latency of VoIP streams under
increasing background load. The hardware support of the
OpenBNG allows for stable latency for all tested scenarios.
Another notable advantage of OpenBNG’s hardware-based
approach is its scalability, with the FPGA providing ample
space for all queues, facilitating scalable deployment of the
BNG.

Fejes et al. [2] propose a hierarchical QoS system utilizing a
Per Packet Value (PPV) marker. This approach assigns values
to each packet based on their header fields, thereby grouping
packets into traffic aggregates according to a Throughput-
Value Function. A scheduler utilizes this information to map
the traffic distribution of a traffic class into an aggregate
distribution of all the input traffic, thus achieving a multi-level
split of the capacity. Unlike traditional HQoS systems, which
require complex queueing and hierarchy management, this
PPV-based system simplifies the implementation of complex
HQoS scheduling. They presented an in-depth evaluation of
the HQoS with dynamic and static scenarios. The dynamic
scenarios show the transient performance of the system to ac-
curately perform the prioritization and shaping of the different
traffic classes. The static scenarios evaluate the throughput
deviation of the system, defined as xi

ideali
− 1, with different

mixes of background traffic. They show the PPV concept
is able to implement the HQoS concept without resorting
to managing large numbers of queues and maintaining the
complex scheduling structure. Our analysis diverges from this
study, as we focus on the latency performance of the system.
Integration of this HQoS into the BNG as not yet been done.
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Fig. 7: Latency traffic isolation and non-uniform workload application.

In [3], one proposal to execute HQoS in a multi-core manner
is described, aiming to improve the performance of the Linux
Kernels’ HTB. The approach involves separating the enqueue
and dequeue operations to independent cores, with scheduling
eligibility determined during dequeue, thereby avoiding the
need for locking mechanisms. The systems’ throughput and
number of queues was evaluated through experiments, assess-
ing the capability to shape to two types of services. While our
work differs in its focus on user space networking, the proposal
of decoupling the enqueue and dequeue mechanism might
be applicable to the DPDK scheduler, potentially improving
performance at the expense of CPU cores.

Lemeshko et al. [27] proposed a two-level hierarchical QoS
system running in a multi-core environment. This system
manages capacity by macro-queues and sub-queues. Sub-
queue calculation function is kept internal to each CPU thread,
while the upper-level functions for macro-queues are overseen
by a coordinator thread. Although the original study solely
presented a numerical analysis of the system, the results
indicated a scalable algorithm. This approach holds promise to
alleviate for addressing challenges related to separate instances
and preserving work conservation.

VII. CONCLUSIONS

Implementing complex packet-processing functions on read-
ily available hardware save costs for operators. In this paper,
we have investigated the packet-forwarding performance of a
software BNG, a crucial piece of infrastructure for network
connectivity in broadband access networks. Through real test-
bed experiments, we benchmarked the latency resulting from
a software BNG implementation. Our experiments showed the
negative impact of background traffic on latency and latency
variation of delay-critical traffic. We demonstrated how batch
configuration and multi-core scaling may be used to counteract
the latency increase, with some limitations. First, the static
batch parameter is not adaptive to the traffic load of the system,
potentially increasing the latency in low-load scenarios. Sec-
ond, the non-uniform distribution of traffic to instances in the
multi-core scaling scenario results in sub-optimal utilization

of port capacity. These observations impact the ability of the
software BNG to provide performance guarantees.
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