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Abstract—Some kinds of application traffic, such as Cloud
Gaming (CG), are particularly demanding for a network to
transport because they require at the same time a low-latency
and a high-bitrate. Quality of Experience (QoE) can quickly
deteriorate when the network Quality of Service (QoS) is not met
regarding bandwidth and delay requirements. In particular, the
competition with some capacity seeking flows may induce a high
queuing latency on the bottleneck (buffer-bloat phenomenon).

In this paper, we evaluate two network level solutions that
allow CG traffic to be processed in specific queues, but exhibit
different operational constraints. The first solution uses a class-
based queuing policy (Hierarchical Token Buckets, HTB), which
requires prior traffic classification and some traffic engineering.
The second solution leverages the new Low Latency, Low Loss &
Scalable Throughput (L4S) architecture and the DualPI2 Active
Queue Management (AQM), but it needs the application support.

We perform extensive measurements on an experimental CG
platform that integrates the L4S-compliant SCReAM CCA and
that we made to evaluate both approaches regarding their QoS
enforcement capability and fairness against different competing
flows that are driven by TCP CUBIC or BBRv2. We show that
both solutions succeed to preserve the QoS of CG traffic.

Keywords—Low Latency, Quality of Service, Active Queue
Management, Bufferbloat, L4S, Cloud Gaming, SCReAM

I. INTRODUCTION

Networks are designed to provide maximum bandwidth
while handling packet bursts. Therefore, large buffers are by
default included in network devices to keep the pipe full.
That is particularly true for cellular networks such as 4G/5G
where buffers help to cope with their varying capacity nature.
However, filling these buffers can cause high queuing delays,
known as the bufferbloat phenomenon [1], that affect latency-
sensitive applications and significantly reduce their Quality of
Experience (QoE) when the network capacity is challenged.
For instance, the increasingly popular Cloud Gaming (CG)
service requires at the same time a high bandwidth to transport
real-time encoded high-definition multimedia flows at high
frame rates, and a low latency to have the game react quickly
to user inputs, making it particularly difficult for the network
to transport. For instance, this implies a very short buffer
size to reduce playout delays but which prevent to retransmit
lost packets. Bufferbloat becomes the main component of the
latency chain of CG when network resources are limited,
accounting for several dozens of milliseconds. To find a trade-
off between bitrate and delays, applications must rely on

the configuration of their own congestion control algorithms
(CCAs). In a previous paper [2], we assessed how four
prominent CG platforms adjust their traffic in response to
network constraints. One of them does not react to latency
increase but only to packet drops, which leads to prohibitive
delays in some conditions, while others may react too late
to a capacity variation, or sometimes overreact, which also
deteriorates the QoE. This shows that pure application-level
mechanisms are not sufficient alone to maintain traffic Quality
of Service (QoS) in some cases.

Traditional AQM systems apply a single traffic management
policy irrespective of the differences in delay-throughput ob-
jectives of applications. Without a way to decouple different
types of traffic at the network level, the competition with non-
collaborative flows (loss based) leads inevitably to bufferbloat.
The main motivation of our work is thus to evaluate systems al-
lowing the management of distinct delay-throughput tradeoffs
for CG traffic and capacity seeking traffic. This paper focuses
on the evaluation of two network solutions that incorporate
distinct queues to avoid applications where congestion control
is unaware of queuing delays to fill the same buffer used by
latency-sensitive applications, and thus enhance the QoS of
traffic like CG. The first solution is based on the queuing
discipline HTB, which considers traffic classes, determining
the scheduling of packets at the bottleneck [3]. However,
prior traffic classification and accurate traffic engineering is
required. Our previous works have successfully addressed this
concern by accurately identifying CG traffic at line rate [4],
[5]. The second solution leverages the Low Latency, Low
Loss, Scalable Throughput (L4S) architecture and the DualPI2
AQM, which only considers two traffic classes and does not
require prior traffic classification [6]. By setting the 2 bits
of the IP Explicit Congestion Notification (ECN) header, an
application can state whether its traffic is classic or scalable.
scalable traffic is forwarded to the L4S queue, guaranteeing
low delays and minimal loss. However, this approach also
imposes an additional constraint, requiring application support
through the implementation of a scalable CCA compliant with
L4S requirements. L4S being a recent technology, it is not
leveraged by commercial CG platforms to date. So we de-
signed our own experimental CG platform to fully master the
network aspects. Its bitrate is managed by SCReAM, an open-
source and scalable CCA specifically designed for real-time
services [7]. To the best of our knowledge, no previous study
has addressed the QoS of real low-latency traffic transported978-3-903176-64-5 ©2024 IFIP



over L4S and especially of RTP-based applications. Previous
research either relied on simulation [8] or TCP Prague.

We conduct several experiments to evaluate the impact
of the aforementioned network solutions on traffic QoS and
fairness. It involves generating real CG traffic and synthetic
concurrent traffic (with iperf) and to observe their interactions
at the network bottleneck. The two main CCAs, Cubic and
BBRv2, alternately handle the competing traffic. For both TCP
and CG traffic, we monitor the 3 following metrics: bitrate,
queuing delay, and loss rate. We also conduct some experi-
ments with a simple droptail queue to define the baseline.

To sum up, our contributions are the following:
• we conduct the first study comparing a class-based queu-

ing policy and L4S to improve the QoS of high-bitrate
and low-latency traffic by preventing bufferbloat;

• we conduct the first study evaluating L4S against a
real low-latency application traffic, in our case Cloud-
Gaming;

• we consider the SCReAM CCA and show its ability to
properly drive CG traffic;

• we provide an open-source and modular Cloud-Gaming
experimental platform that can be used to further inves-
tigate the network aspects of CG.

The remainder of this paper is organized as follow. Section
II presents the related work on queuing disciplines and scal-
able CCAs. We then present our experimental CG platform
in Section III and we assess its proper behavior on emulated
cellular network conditions. Section IV presents our evaluation
of network solutions to preserve the QoS of CG traffic. In Sec-
tion V, we further discuss the advantages and disadvantages
of each approach. Finally, Section VI concludes this study and
introduces future work.

II. RELATED WORK

It is widely known that network congestion can cause addi-
tional delays, which can undermine QoS. The primary reason
of network congestion is the filling of large network buffers,
commonly referred to as the “bufferbloat” phenomenon [1].
Empirical studies have established that downstream transfer
of Cloud Gaming traffic exerts a statistically higher impact on
QoE than upstream transfer. Jarschel & al. [9] contend that
downstream packet loss and delays have the most profound
influence on QoE. Consequently, it is imperative to maintain
these factors at an appropriate level to deliver high-quality
services to end users.

One approach to address the bufferbloat phenomenon is by
employing Active Queue Management (AQM) mechanisms.
AQMs, such as RED, Codel, or PIE play a vital role in notify-
ing endpoints when the congestion level exceeds a significant
threshold. These systems are designed to send congestion
signals in proportion to queue occupancy [10], [11], [12].
They thereby enable the endpoints to take preventive measures
to avoid network congestion. While AQMs typically discard
packets to indicate network congestion, it is also possible to
send an explicit congestion signal (ECN) by setting a codepoint

in the IP header [13]. However, the endpoints must comply
with this kind of signal.

In [14], Alizadeh & al. introduce DCTCP, a CCA that lever-
ages ECN to detect congestion. Unlike most CCAs, DCTCP
adjusts its throughput based on the fraction of congestion
signals, which allows for a balance between low queue length
and high throughput. DCTCP is typically limited to data
center environments due to its aggressive nature compared to
traditional CCAs. Therefore, Bondarenko & al. recommend
implementing two separate queues at the bottleneck to handle
different types of traffic [15]. This approach allows for a
smooth coexistence of scalable and classic flows. The DualPI2
AQM is based on this idea and ensures that neither queue
experiences starvation [6]. The congestion signals sent by each
queue are tailored to the type of traffic it handles. L4S (“Low
Loss Low Latency Scalable throughput”) designates the queue
associated with the scalable traffic.

The “Prague L4S requirements” offer guidance to both
L4S transports and network elements [16]. These requirements
emphasize the need for a scalable CCA that reduces its de-
pendence on RTT and controls its bursts to be “L4S-capable”.
This list is not comprehensive, and readers can refer to RFC
9331 [16] for further details. TCP Prague is an adaptation of
DCTCP to L4S [17]. The project contributors maintain a list1

of CCAs that are compliant with the L4S standards, including
TCP Prague and Self-Clocked Rate Adaptation for Multimedia
(SCReAM) [7], another IETF experimental standard. Even
if some other CCAs have been designed with applications
such as Cloud Gaming in mind, like SQP [18] or C3G
[19], we selected SCReAM because of 1) its support of
L4S, 2) its support of the Real Time Protocol (RTP) that is
the main transport protocol used by CG platforms (most of
the time along webRTC) [2], 3) its ability to accommodate
cellular network conditions and 4) its documentation and open-
source nature. Even if SCReAM was originally developed for
conversational video over normal LTE networks, it appears
to be versatile enough and well-suited for CG as well, as we
will show. SCReAM relies on the Real-time Transport Control
Protocol (RTCP), the companion protocol of RTP, to transport
the feedback of the network to the sender through the receiver.
This feedback is used to compute the bytes in flight and to
measure the One Way Delay (OWD).

The two closest works to our study are [20] and [8]. In
[8] Brunello et al. evaluate the benefit of using L4S over
5G to transport a high-rate, latency-critical application. They
also use SCReAM but their approach is completely different
because their results are based on a proprietary network sim-
ulator, while we generate and process real application traffic.
Also, contrary to us, they do not consider alternative queuing
discipline approach like HTB, nor the competition with other
flows driven by other CCAs. This last point is precisely the
purpose of [20]. Xu et al. measure how three commercial
CG platforms respond to competing TCP Cubic and TCP
BBR flows on a congested network link. The fundamental

1https://l4steam.github.io/



difference is that they only consider a drop-tail queue while we
want precisely to investigate more advanced network solutions.
It is worth to note that they witnessed different behaviors
between platforms regarding the competing flow. In some
cases, one platform may allow the competing flow to have
twice the fair bandwidth amount, while in other cases, either
another platform or the same platform may do the opposite to
another competing flow, resulting in unbalanced traffic sharing
configurations. Another noteworthy finding is the correlation
between large bottlenecks queues and adverse effects on
gaming systems: 1) increased delays, undermining QoE, 2)
prolonged response/recovery times to competing flows. This
problem is even more pronounced when competing with TCP
Cubic, a loss-based CCA, whereas TCP BBR contains the
extent to which the bottleneck queue grows. This motivates
our approach for distinct queues.

III. EXPERIMENTAL CLOUD GAMING PLATFORM

A. Software architecture

In this section we present an experimental Cloud Gaming
Platform (eCGP)2 we have developed in order to master every
aspect of the CG use case: from the server to the client,
including the network part and the choice of the congestion
control algorithm (CCA) in place. It is based around the
FFmpeg API that contains a lot of tools to process audio and
video streams and exposes an unified API for a large variety
of encoders. It shares similarities with GamingAnywhere [21],
the sole open source CG platform available at the time we
started our study. However, its current utility is constrained
by the reliance on deprecated APIs and the use of RTSP
over TCP, which does not accurately reflect the practices of
modern CG platforms that predominantly use RTP on top of
UDP as the transport protocol [2]. The necessity to make
numerous adjustments, coupled with the relatively simplistic
macro logic, prompted us to develop our own platform tailored
to our requirements around CCA, but drawing inspiration from
this existing framework.

We first present the general architecture of the client and
server before describing how we included the SCReAM(v2)
CCA in the platform as a proxy service for a better modularity.

1) CG server: The platform is developed for a GNU/Linux
operating system and works in a similar way to a remote
desktop protocol (RDP). A client connects to the server and
performs actions on it remotely. It receives audio and video
streams in return. These flows result from captures made on
the server.

The X11 windowing system is used to make the video
stream by enabling to record the rendered screen at a given
sampling rate. Raw video frames (AVFrame) are generated. It
is illustrated by the VideoGrabber and Encoder components
in Figure 1. An intermediate processing is made before the
encoding to adapt the frames to the format expected by the

2https://github.com/mosaico-anr/eCGP

Fig. 1: Functional architecture of our CG server

encoder in use. In particular, two popular encoders are avail-
able: H.264 and H.265, but any other could work as long
as they have a known RTP payload format (packetization).
The encoder can also use NVENC to take advantage of GPU
hardware encoding on Nvidia discrete graphic cards. It offers a
fast encoding and great reactivity to on-the-fly bitrate changes.

Audio follows a similar pipeline but is captured by the
ALSA software, which is part of the Linux kernel. It provides
an API to interface with the sound chipset driver. The Audio-
Grabber component generates audio frames that are directly
passed to the Encoder. The Opus format is used to encode
audio frames. It is very efficient and widely used in real-time
communications.

The last component manages inputs and is illustrated in the
center of Figure 1. First, clients need to connect to a server
socket via TCP to get a session number that will allow to
identify operations related to each client. There are two types
of operations: platform commands and game inputs.

- Game inputs represent a user’s actions on the controller(s)
and are conveyed in a JSON format transferred over UDP.
Three different components manage game inputs depending
on the peripheral in use and are illustrated on the right part of
Figure 1:

• VirtualKeyboard: manages user’s actions of the keyboard;
• VirtualMouse: manages user’s actions of the mouse;
• VirtualGamepad: manages user’s actions of the gamepad.

Those three components write the received commands in
/dev/uinput, a kernel module managing virtual devices.

- Platform commands manage the signaling between a
client and the server. They are transmitted over TCP using
the same socket that was used to initiate the connection.
More precisely, SDP(Session Description Protocol) messages
are sent to describe multimedia sessions. They tell the
client to which port are sent audio and video flows. The
other main function is to implement a RTP Sender that will
transmit encoded audio or video flows to the client thanks
to the RTP+RTCP protocols that are specifically designed to
transport multimedia flows with low latency requirements.
RTP is used in most commercial Cloug Gaming platforms
(Google Stadia, Microsoft Xbox Cloud Gaming, Nvidia
GeForceNow, Amazon Luna) through webRTC sessions.



Fig. 2: Functional architecture of our CG client

2) CG client: The CG client architecture is depicted in
Figure 2. Connections are managed by the Command Socket
component. The platform commands manage the configuration
of the two RTP Receivers that are linked to their decoders
(Audio or Video). Decoders create the frames from the raw
data present in the buffer. The resulting frames are given to
the SDL Display (Simple DirectMedia Layer) component, a
library that offers an abstraction of the underlying hardware
and allows to play audio and video tracks.

Game inputs are also managed by SDL. There is a polling
of system events that are filtered to select only the relevant
entries. A JSON file is created and gather all events recorded
over the sampling period. It is then sent to the server by the
Command Socket component that directly uses UDP.

3) Congestion Control with SCReAM proxy: Our exper-
imental Cloud Gaming Platform needs a way to adapt the
traffic throughput to the actual network conditions. We chose
to rely on the SCReAM CCA developed by Ericsson3 to
drive packet sending. But in our will to have a modular
platform to experiment different network components, we did
not integrate directly SCReAM source code but made a proxy
to use it. Two local SCReAM proxies are thus deployed on the
same computer than the client and the server to manage their
respective sending rate. The point of the proxy design is to be
able to easily use an alternative CCA by defining interfaces
without needing to integrate the CCA code directly into the
code of the platform.

a) Server-side SCReAM proxy: The server-side
SCReAM proxy is by far the most critical because it
handles high-bitrate multimedia flows. The CG server
interacts with the local SCReAM proxy through the loopback
interface (lo). The proxy handles the six flows composing
a CG session through dedicated sockets that can be of four
types.

• UDP Socket: to send or receive UDP segments;
• TCP Client: to send or receive TCP segments;
• TCP Server: like TCP Client but does not initiate a TCP

connection;
• SCReAM: to send or receive RTP packets with congestion

control.
Pre-defined port numbers are used for each flow. One must
note that only the RTP video flow is actually processed by

3https://github.com/EricssonResearch/scream

Fig. 3: CG platform’s flows

the SCReAM algorithm. This is because it is by far the most
significant flow and the only one that can truly benefit from
congestion control to adapt its bitrate by adjusting the video
codec parameters (mostly through the quantization factor that
defines the level of video compression). The other flows going
through the SCReAM proxy are just transferred untouched to
the corresponding socket of the client.

The reception sockets extract the payload of packets and
pass it to the corresponding sending sockets through a queue.
The two TCP sockets (TCP Client and TCP Server) used by
the proxy are full duplex. They handle the signaling traffic
between the client and server.

The SCReAM component is connected to the client to send
the video flow and receive its feedback. The packets sent by the
CG server are placed in a FIFO queue which reading depends
on the network conditions. The sending of packets is driven by
SCReAM’s CCA, according to Ericsson’s specifications [7]. It
takes into account the length of the RTP queue and the periodic
RTCP feedback from the client, and of course ECN network
feedback when available. Thanks to this feedback SCReAM
can monitor the network delay, packet loss and the state of the
bottleneck. The CCA finally defines a target bitrate to meet the
current conditions and that will be given to the video encoder.
In particular, SCReAM can issue two commands:

• Bitrate Request: a new target bitrate defined for the
encoder;

• I_Frame Request: a new I_Frame is recommended to
prevent the propagation of visual artefacts when a packet
loss is detected.

Theses commands are translated to a format compatible with
the actual encoder by the Bitrate Converter component and
sent to the server through the loopback. Finally, these instruc-
tions are processed on the server by a remote_session class
that drives the video encoder.

b) Client-side SCReAM proxy: Like the server-side
proxy, most flows are just transferred to the client by the client-
side proxy. Only the video stream is processed specifically.
When a packet is received, the SCReAM component forwards
the UDP payload to the RTP Converter. It extracts some
information and computes statistics on the received video flow
and periodically creates a RTCP report that is sent back to
the server. In particular, the value of the ECN-CE bits in the
received packets that denotes an occurring congestion on the
path is extracted and is considered by the CCA.

A global view of the CG platform’s components and net-
work flows is given in Figure 3.
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Fig. 4: SCReAM performance on an emulated cellular network

B. Assessment of our experimental CG platform

Although designed to be a CCA suitable for real-time
interactive media over RTP, notably video, SCReAM has never
been tested with real CG traffic. In this section, we evaluate
our CG platform to assess if the SCReAM CCA behaves
as expected. For this, we consider a demanding network
condition, i.e. a 4G cellular network in which the end user
capacity can quickly vary over time.

Our testbed is composed of one CG client, one CG server
and one router in-between. For all the experiments in the
paper, the CG server is configured to use the H265 hardware
accelerated codec provided by Nvidia (NVENC) and the video
stream is set to 1080p at 60 fps. The most notable additional
parameters are the P4 preset with ultra low latency tune
and zero latency mode and a CBR rate control. The router
is responsible for emulating mobile network conditions. For
this, we use the Mahimahi linkshell tool4 which replays the
transmission opportunities (txops) as we captured them from
a real cellular network from a national operator5. Traffic is
captured by wireshark twice, as packets enter and leave the
bottleneck router. This allows us to compute the queuing time
for each packet and the loss rate.

Fig. 4 plots the evolution of throughput, delays, and loss
rate. We notice a sudden drop in link capacity, more precisely
a short loss of connectivity that often happen in cellular
networks, around t=50s, leading to an increase in latency
(>300ms) as packets can not be transmitted during that time.
This increase in latency triggers a strong response from
SCReAM, causing an immediate bitrate decrease. Despite
the resurgence of transmission opportunities (txops), the
CG bitrate fluctuates around 7 Mbps for about 20 seconds.
Nevertheless, the bitrate recovering seems quicker after the
second (≈ t=105s) and third (≈ t=330s) bandwidth decrease
events. This can be explained because in those two cases
latency is less impacted. The length of the two plateaus around
7 Mbps might be due to the encoder rather than the CCA.
Indeed, it is worth noting that the bitrate ultimately depends on
the transmitted video. The encoder can take some time to adapt

4http://mahimahi.mit.edu/
5https://cloud-gaming-traces.lhs.loria.fr/cellular.html

TABLE I: Queuing delays measured over a cellular network trace
for different CCAs

No CCA SCReAM CCA GFN CCA
Average Latency 47.9ms 15.98ms -
% of packets > 10ms 99.8% 73.9% 52.4%
% of packets > 20ms 85.2% 18.4% 30.4%
% of packets > 50ms 21.1% 1.5% 10.0%
% of packets > 100ms 6.8% 0.3% 2.6%

Fig. 5: Testbed SCReAM CG vs concurrent traffic

to the bitrate request given by SCReAM. With the exception
of two punctual latency spikes due to the aforementioned
short disconnections, observed delays and packet loss are fully
compatible with a good gaming experience.

Table I summarizes the latency statistics measured on the
CG platform with and without SCReAM CCA. We have also
included the numbers of the GeForce Now (GFN) CG platform
from Nvidia. Unfortunately GFN being closed-source, the
CCA it uses is unknown but our evaluation showed [2] that
it is the most capable to adapt its bitrate to network condi-
tions, offering a good tradeoff between a quick adaptation to
network events without overreacting. In the absence of CCA,
our platform maintains its bitrate at 30 Mbps, regardless of
network conditions. Enabling SCReAM reduces the average
latency from 47.9ms to 15.9ms. Actually, some outliers hurt
the average latency (the two spikes resulting from a loss of
connectivity). In the case of SCReAM, only 0.3% of packets
exceed the 100ms threshold above which the experience is
considered non-acceptable for gamers, when it reaches 6.8%
in the absence of CCA. In terms of delays, SCReAM’s
performance is even better than GFN’s for the last 3 thresh-
olds. Whatever the latency threshold considered, our platform
always has fewer packets exceeding it than GFN, proving that
SCReAM is capable to properly drive a CG application. This
shows that SCReAM(v2) is already very capable to drive CG
flows and could be a good candidate to build an open-source
CCA for CG with some fine tuning of its internal parameters.

IV. EVALUATION OF NETWORK QUEUING SOLUTIONS

A. Testbed and experimental protocol

The main goal of our study is to evaluate to what extent
network queuing solutions can help to improve the QoS of
CG traffic when it is in competition with other flows at the
bottleneck. In particular, we consider a class-based queuing
policy, HTB, and the L4S architecture when processing CG
traffic alongside flows driven by two of the most widely used
CCAs today, TCP Cubic and TCP BBRv2.



The testbed is shown in Fig. 56, where all flows (CG and
concurrent ones) pass through an intermediate router which
applies the desired link characteristics via tc-netem rules. The
client runs on a laptop and the server on a workstation with
a GeForce RTX 3060 to use Nvenc. They are connected to
the router through a 1Gbps ethernet interface. We add a fixed
RTT delay of 30 ms (15 ms in each direction) between the CG
client and CG server, so that our tests are more representative
of a real platform operating on the Internet. We limit the link
capacity to 50 Mbps, a value close to the average bandwidth
of a 4G network [22].

TCP iperf is used to generate concurrent TCP traffic driven
by either Cubic and BBRv2 CCAs. BBRv2 was preferred
because BBRv1 is known to have fairness issues by not
reacting adequately to loss-based congestion signals sent by
L4S in the best-effort queue. For a fair comparison with
Cubic, we disable ECN support of BBRv2 to have its traffic
handled by the BE queue. The TCP iperf target throughput
is increased every minute, so that the flow rates have time
to converge. It takes the following values: 10Mbps, 20Mbps,
30Mbps, 40Mbps, 45Mbps. This is materialized in Figures 6-
11 by red vertical lines.The concurrent flows are started one
minute after the CG traffic. This first "warm up" minute is not
considered in the statistics. Each experiment is reported after
a single experimental run. Indeed, our point in the paper is to
evaluate the impact of queuing policies with real CG traffic.
The drawback is that, for each experiment, someone must
actually play a game on the CG platform. This part cannot
be easily automated.

At the end of the experiments, we analyse 3 QoS metrics
that have been proven [23] to be highly correlated with CG’s
QoE: the throughput, the queuing latency and the loss rate.
We think that it is a good approximation of the QoE which
requires a lot of work to be performed properly by applying a
methodology limiting human bias, which is beyond the scope
of this paper. Also, low level metrics are easier to interpret to
understand the effect of underlying network mechanisms.

In the following figures, we draw the results for CG in blue
solid lines and for Iperf in orange lines with circle markers.
The following subsections evaluate in turn the 3 queuing
policies: drop-tail, HTB and L4S. We only consider the high
bitrate server-to-client traffic that can actually be driven by
a CCA. The client-to-server traffic instead has a negligible
bitrate being mostly made of user’s inputs, plus it’s bitrate
cannot really be driven by a CCA. In case of loss, it is admitted
that the player must simply redo the inputs. For each type of
traffic and queuing policy considered, Table II gives additional
information about the distribution of the latency and bitrate
metrics, the average loss rate and the link utilization. Please
note that the statistics are calculated only when the bottleneck
is saturated and the flows are actually competing for bandwidth
(from the third minute and onward).

6It should be mentioned that the iperf client is the entity sending the data
and the iperf server the one receiving it.

B. Baseline: the drop-tail scenario

The first policy is a simple drop-tail queue, the basic strategy
of most network devices, with a buffer size of 250 packets.
When the queue is full, packets are simply dropped.

1) SCReAM vs Cubic: Fig. 6 shows the behaviour of
SCReAM when competing with TCP Cubic traffic. We see
that the link begins to be congested from second 120. The TCP
flow then has a target throughput of 20 Mbps, while the CG
traffic has been slightly lowered of a few Mb/s to stay below
30 Mb/s. Subsequently, TCP steals gradually the bandwidth,
each increase of target throughput is granted to the detriment
of CG traffic. The queuing delays affecting the the two traffics
are identical (average 44ms, cf Table II) because they share
a unique queue. The third graph reveals the total absence of
losses. It is for this reason that iperf scrupulously respects
its target bitrate instructions. In the absence of a congestion
signal, Cubic can transmit without restriction. Conversely,
the increase in queuing times causes SCReAM to react, by
decreasing its bitrate down to the minimum and thus by
degrading the video, which causes unacceptable QoE. The
penalty is even double because even with such a minimal
bitrate, latency can reach high values.

2) SCReAM vs BBRv2: Fig. 7 shows that the cohabitation
between SCReAM and BBRv2 is better than with Cubic, with
a more equitable bandwidth sharing. Indeed, even if BBRv2
takes over SCReAM, it leaves more room to SCReAM than
Cubic. According to Table II, the first quartile of through-
put is 9.69 Mbps. This is two times more than what was
measured with Cubic (4.29 Mbps). The flow bitrates also
seem to stabilize from the 4th level. The value of 40 Mbps
(second 240) generates a final increase in TCP throughput.
This increase nevertheless generates network delays. In the
absence of losses, the increase in delays prevents BBRv2 from
further increasing its throughput. The packet queuing time
oscillates around 35ms, which, added to the 30ms RTT and
the time taken to encode and decode video frames, is very
close to the limit of 100ms above which the service is not
considered responsive. Yet we can clearly see the benefit of
BBRv2 considering delays to evaluate congestion.

In real life, the nature of competing flows can not be
controlled. Bandwidth sharing depends on the characteristics
of the bottleneck and the CCAs used. This section showed
that the distribution of resources can be very unfair and is
detrimental to CG flows in both cases. Despite the bitrate of
CG traffic decreasing to an unacceptable extent, the bufferbloat
issue we want to address still clearly arises in this drop-
tail scenario with 85.54% of CG traffic suffering from an
additional queuing latency above 20 ms when facing Cubic
flows, and 68.88% for BBRv2 flows, with some notable spikes
above 80ms in the former case. For this reason, Turkovic & al.
advocate the creation of traffic classes [24]. According to them,
applications with low latency constraints must be isolated from
the other flows. Thus, in the next section we evaluate the HTB
queuing discipline.
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Fig. 6: Drop-tail : SCReAM vs Cubic

50 100 150 200 250 300 350
0

10
20
30
40

Ba
nd

w
id

th
 (

M
bp

s)

iperf
platform

50 100 150 200 250 300 3500
20
40
60
80

100

La
te

nc
y 

(m
s) iperf

platform

50 100 150 200 250 300 350
Time (in seconds)

0
2
4
6
8

10

Lo
ss

 r
at

e 
(%

)

iperf
platform

Downlink

Fig. 7: Drop-tail : SCReAM vs BBRv2

TABLE II: Cloud Gaming (SCReAM) vs TCP Iperf (Cubic or BBR) with the 3 queuing disciplines

Droptail HTB L4S
Cubic BBRv2 Cubic BBRv2 Cubic BBRv2

CG Traffic

Avg Latency 44.9 ms 26.5 ms 1.16 ms 0.61 ms 0.53 ms 0.31 ms
Variance 24.34 11.93 0.92 0.8 0.99 0.51

% > 10 ms 96.28% 84.23% 0% 0% 0% 0%
% > 20 ms 85.54% 68.88% 0% 0% 0% 0%
% > 50 ms 34.71% 0.41% 0% 0% 0% 0%

% > 100 ms 0% 0% 0% 0% 0% 0%
Avg Bitrate 12.83 Mbps 15.18 Mbps 28.64 Mbps 28.66 Mbps 24.25 Mbps 21.66 Mbps
1st quartile 4.29 Mbps 9.69 Mbps 27.22 Mbps 27.63 Mbps 21.83 Mbps 19.78 Mbps
2nd quartile 12.17 Mbps 12.6 Mbps 29.14 Mbps 28.9 Mbps 25.06 Mbps 22.32 Mbps
3rd quartile 18.81 Mbps 18.98 Mbps 30.78 Mbps 30.23 Mbps 27.52 Mbps 24.34 Mbps
Loss Rate 0.25% 0.33% 0.24% 0.05% 0.08% 0.1%

TCP Traffic

Avg Latency 44.45 ms 25.96 ms 99.78 ms 67.38 ms 4.68 ms 7.57 ms
Variance 24.57 12.31 26.84 20.91 4.03 5.67

% > 10 ms 99.18% 84.71% 99.18% 99.17% 6.75% 25.42%
% > 20 ms 82.3% 66.53% 99.18% 98.76% 0.84% 4.66%
% > 50 ms 35.8% 0.83% 96.3% 81.41% 0% 0%

% > 100 ms 0% 0% 48.15% 2.48% 0% 0%
Avg Bitrate 33.34 Mbps 31.66 Mbps 19.56 Mbps 19.28 Mbps 16.43 Mbps 21.68 Mbps
1st quartile 21.14 Mbps 21.73 Mbps 18.12 Mbps 17.55 Mbps 13.52 Mbps 19 Mbps
2nd quartile 31.69 Mbps 32.74 Mbps 19.54 Mbps 19.31 Mbps 16.56 Mbps 22.25 Mbps
3rd quartile 43.91 Mbps 38.31 Mbps 21.32 Mbps 20.73 Mbps 19.58 Mbps 24.08 Mbps
Loss Rate 0.42% 0.57% 0.56% 0.16% 0.25% 0.33%

Link utilization
CG Traffic 25.65% 30.35% 57.27% 57.32% 48.5% 43.33%
TCP Traffic 66.68% 63.31% 39.12% 38.57% 32.86% 43.37%

Total 92.33% 93.66% 96.39% 95.89% 81.36% 86.7%

C. Hierarchical Token Bucket (HTB) queuing discipline

Our Hierarchical Token Buckets (HTB) configuration is
based on the work [25]. We create two traffic classes: CG and
Best Effort (BE), with CG having the higher priority. We guar-
antee a minimum throughput of 10 Mbps for CG traffic. This
value is below of the reference flow of commercial platforms,
however, it does not prevent them from operating. Regarding
queues, we use two classless mechanisms: Stochastic Fairness
Queuing (SFQ) for the CG class and Packet First-In, First-Out
(pFIFO) for the BE class. As recommended by [25], we take
care to limit their respective sizes: the pFIFO to 250 packets,
the SFQ to 63 packets.

1) SCReAM vs Cubic: Fig. 8 shows the results of the
experiment. We can see that the CG traffic maintains its
throughput at 30 Mbps while maintaining negligible delays.
According to Table II, we reach an average of 1.16 ms. The

delays suffered by TCP flows are much greater (100ms on
average), which is however not damaging since the service is
not sensitive to latency. The TCP flow bitrate then stabilizes
around 20 Mbps. So the fairness is far better. We notice some
latency peaks, generally not exceeding 150 ms. This value is
consistent with the average throughput observed and the size
of the queue. Remember that the BE is limited to 250 packets,
or approximately 3 Mb. Given a throughput of 20 Mbps, it only
takes 150 ms to fill the queue. Delays observed allow us to
conclude that the pFIFO is sometimes full, leading to a few
packet losses. We do not see them on the third graph because
Cubic reacts quickly to adapt its bitrate. Its average loss rate
is low, approximately 0.56%.

2) SCReAM vs BBRv2: We can observe in Fig. 9 that the
CG flow maintains its initial flow rate for the entire duration
of the experiment. As pointed out before, its queuing times
remain very low and losses are almost non-existent. This
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Fig. 8: HTB : SCReAM vs Cubic
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Fig. 9: HTB : SCReAM vs BBRv2

results in excellent QoE despite the competing traffic. Whether
it competes with Cubic or BBRv2, HTB effectively preserves
the QoS of the CG traffic. The statistics of the CG traffic are
very similar between the two experiments. BBRv2, however,
has a better control over delays (95ms on average for Cubic vs
67ms for BBRv2), and presents fewer latency peaks exceeding
100ms.

When looking attentively to bandwidth curves, the reader
may wonder why the throughput of CG can suddenly drop
(second 260 in Figure 9). Actually, this is not caused by the
network load but by the video encoder. Indeed, the CG traffic
being from a real application, some in-game events (typically
a fixed loading screen) can reduce the video complexity and
thus the CG traffic throughput. We also see that iperf does not
take long to exploit it where the curves are crossing each other,
but the CG traffic is also able to quickly restore its throughput.
This shows a good interaction between the CCAs and HTB.

D. Low Latency, Low Loss, and Scalable Throughput (L4S)

The IETF L4S architecture is proposed for low-latency
services. We use the DualPI2 AQM in the network router
(being the bottleneck), with one queue for low-latency traffic
and one for best effort traffic. We set the maximum size of
the L4S queues to 1000 packets (approximately 12 MB). The
rest of the configuration is let by default, as suggested by the
IETF.

1) SCReAM vs Cubic: Fig. 10 shows that L4S is also
able to preserve the QoS of CG traffic against Cubic. The
three metrics: average bitrate (24.25 Mbps), average latency
(0.53 ms) and loss rate are fully compatible with a good
experience. Regarding the TCP traffic, the queuing latency is
much reduced compared to HTB (4.68 ms instead of 99.78 ms)
but it is at the expense of a slightly lower average bitrate. We
can also note that HTB achieved a higher throughput for CG
(28.64 Mbps), that can lead to a better video quality. Another
point is that link utilization was better with HTB (96.39%)
than L4S (81.36%). This is another important criteria for a
network provider.

2) SCReAM vs BBRv2: In this experiment, bandwidth
sharing between iperf and CG traffic is perfectly balanced.
As depicted in Figure 11, both bitrates tend to stabilize at

approximately 22 Mbps. Regardless of whether CG traffic
is contending with Cubic or BBRv2, its delays typically
remain below 1 ms. Conversely, best-effort traffic (e.g iperf )
may encounter prolonged queuing times but which should
not be detrimental to their applications. The DualPI2 AQM
incorporates a coupling mechanism between its two queues,
proactively transmitting congestion signals to manage band-
width utilization. The type and the frequency of these signals
varies based on the traffic type, distinguishing between L4S
and best-effort traffic. A comparison between Figures 10 and
11 illustrates the contrast between Cubic and BBRv2. Cubic
exhibits high sensitivity to packet loss. As observed in [26],
even a minimal 0.1% loss can diminish its throughput by a
factor of 10. Consequently, TCP experiences fewer queuing
delays under Cubic CCA but achieves a significantly lower
bitrate while BBRv2 successfully maximizes its bitrate while
containing its queuing delay budget.

V. DISCUSSION

Our evaluation shows that the use of traffic classes can
effectively preserve the QoS of CG traffic. Thanks to HTB,
SCReAM does not appear to suffer from concurrent traffic as
it does with the simple drop-pail strategy, where both traffic
types share a single queue. A single queue can lead to an
increase in queuing delays when concurrent traffic does not
reduce its bitrate enough, or only to loss events. However, the
HTB approach presents some inherent difficulties to imple-
ment from an operational point of view. Indeed, the proper
configuration of the parameters for each traffic class requires
a good knowledge of the flows composing the network traffic
at the bottleneck, what can be challenging and difficult to
maintain in time. We can also mention the difficulty to identify
CG traffic. The machine learning models proposed in [5], [4]
must be regularly updated and the misclassification of a CG
service can lead to the violation of net neutrality.

The use of L4S solves these issues. It requires less configu-
ration and no traffic analysis, what saves computing resources.
Only two traffic categories are considered (classic "best effort"
traffic and scalable "low-latency" traffic). The distinction is
made in a deterministic manner at the protocol level (according
to the setting of the 2 IP-ECN bits), which is much simpler
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Fig. 10: L4S : SCReAM vs Cubic
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Fig. 11: L4S : SCReAM vs BBRv2

for an operator that has only a few parameters to configure in
L4S, and those do not depend on the precise evolution of traffic
shares. L4S, however, requires an effort from the application
provider to implement a scalable CCA (which is the case
of our CG platform, in which we integrated SCReAM),
whereas HTB can be used by any current application with
no modification. Because both approaches are able of good
performance, the adoption of one or another will probably be
driven by the operational constraints and the actors that will
be the driving force pushing innovation in networks between
networked application providers and network providers.

HTB and L4S not only differ in their implementation
requirements, but also in their strategy to manage their queues
which results in different degrees of isolation between low-
latency traffic and classic traffic. With L4S, there is no specific
outgoing bandwidth configuration for each queue since the two
share the same outgoing bandwidth. As such, if one traffic has
a low bitrate, the other one can take more bandwidth. More
precisely, the fairness in L4S is implemented by the coupled
AQM algorithm that achieves window fairness between L4S
and best effort traffic by balancing the congestion marking
probabilities. This balance is a parameter that can be changed,
among others, when deploying DualPi2. We considered the
default value for all parameters but they were defined after a
DCTCP and TCP Cubic scenario and may be suboptimal in
our case. This could explain the lower global link utilization
reported with L4S and the fact that the level of balance
depends on the CCA’s reaction to congestion signals (32%
of link utilization with Cubic vs 43% with BBRv2). Since
DualPI2 doesn’t guarantee a minimum bitrate for CG, an
unresponsive TCP CCA can also potentially compromise the
QoS of CG traffic. The lack of responsiveness to loss-based
or ECN congestion signals can result in the starvation of
L4S traffic, as evidenced by the behavior of BBRv1. This
fairness concern led to the development of BBRv2. In a class-
based queuing approach like HTB, each packet is forwarded
to the dedicated queue, which has been previously configured
with specific parameters: Ceil (maximum outgoing bandwidth
capacity), Rate (guaranteed bandwidth), Prio (class priority).
This allows to achieve a perfect pre-defined balance between

classes, whatever the CCA in use, but some improper config-
urations, for instance too protective towards a class, can lead
to bandwidth waste.

VI. CONCLUSION

The main objective of this work was to enhance the QoS
of CG traffic by avoiding the buffer-bloat phenomenon and
the starvation against competing flows. To achieve this, it
is crucial to consider both the queuing discipline enforced
at the bottleneck and the CCAs used. We considered two
queuing disciplines: HTB and DualPI2. The latter consists of 2
coupled queues that enforce fairness between classic and low
latency flows. However, traffic going through the low latency
queue (L4S) must satisfy a few requirements. Since current CG
platforms do not comply with L4S requirements, we developed
our own experimental CG platform and used SCReAM v2 for
congestion control due to its compatibility with L4S. As far
as we know, this CCA has never been evaluated with real CG
traffic.

Our evaluations show that SCReAM is well suited for CG
traffic. Our CG platform even outperformed GeForce Now
(GFN) in terms of queuing delays under cellular network
conditions. Resource sharing between competing CCAs neg-
atively impacted CG traffic on a simple drop-tail queue. On
the other hand, both HTB and DualPI2 perfectly preserved the
CG traffic QoS from bufferbloat by using dedicated queues.

Finally, we discussed the fact that HTB configuration can
be tricky and requires prior traffic classification. Conversely,
setting up the L4S queuing discipline is much simpler for a
network operator but requires the application support, what is
made easier by open-source scalable CCAs like SCReAM.

Our future work will pursue this research topic in several
directions. We will evaluate the capacity of HTB and L4S
to preserve CG traffic QoS in cellular network conditions.
We will replace the competing TCP iperf traffic by more
realistic competing traffic types such as DASH video streaming
and consider scalable competing traffic within the L4S queue
to further challenge the L4S architecture. We will also work
on designing an open-source CCA for CG by optimizing the
configuration of SCREAM and evaluating it against other
platforms.
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