
Packet Field Tree: a hybrid approach to automated
protocol reverse-engineering

Alex Rohl∗†, Matthew Roughan∗, Martin White∗, Alexander Chambers†
∗University of Adelaide, Australia

†Defence Science & Technology Group, Australia

Abstract—Information and communications technology (ICT)
systems exchange data through agreed network protocols. These
constrain how ICT systems send network packets through a
protocol specification. Protocol specifications are useful knowl-
edge for building intrusion detection systems to monitor system
behaviour, or for performing penetration testing to find system
vulnerabilities. However, protocol specifications are typically
verbose documents, and when new protocols are tested, consid-
erable manual effort is required to translate these specifications
into digital models of expected protocol behaviour. Automated
protocol reverse-engineering (APRE) is a precursor to generating
such digital models for the aforementioned applications. In this
paper, we introduce the Packet Field Tree (PFT), the first hybrid
approach combining the advantages of heuristic and supervised-
learning methods, and apply it to one aspect of the APRE
problem concerning protocol formats. Our model infers the
boundaries between fields of an unknown protocol with a superior
mean perfection, an APRE-specific quasi-accuracy measure, of
0.27 over a variety of 21 protocols. This is an improvement of
at least 0.11 compared to three existing APRE models. Although
this is far from a perfect score of 1.00, highlighting the difficulty
of APRE, our PFT also infers the field syntax types, which is a
feature unique to our model. To measure this feature, we also
propose the PFT-Score, a starting point for holistic evaluation of
APRE outputs.

I. INTRODUCTION

Network protocols are a fundamental component of the in-
formation and communications technology (ICT) ecosystem.
Individual messages generated by a networked system are
called packets, which are typically composed of multiple
layers of encapsulated protocols. Engineering these protocols
involves structures such as inter-packet state-machines, inter-
layer encapsulation, and intra-layer protocol formats. An on-
going question in the research of these structures is, to what
extent can each be automatically reverse-engineered from raw
packet bytes? Our work attempts to improve on answering this
question for intra-layer structures by automatically inferring
their field boundaries and field syntaxes, the protocol format,
within an unknown protocol trace.

There are many reasons why protocol reverse-engineering
(PRE) may be required, such as ensuring cross-platform
compatibility, analysing malicious communications or mining
system vulnerabilities. Open-source manual PRE projects are
predominately community-driven, rather than industry-driven,
owing to potential legal issues. Frequently cited examples of
such manual efforts include Samba (Tridgell, 1992) where

reverse-engineering the Server Message Block (SMB) protocol
was required, chat applications (Spencer, 1998) and smart toys
(Rabet, 2019). PRE is often an ongoing effort since protocols
may be indefinitely updated to support new functionality
(Caballero and Song, 2013), as evidenced by the existence
of multiple SMB versions. Therefore, automated methods
are required to keep pace with continually evolving protocol
suites. We introduce the first hybrid APRE model combining
heuristic and supervised methods, the Packet Field Tree, and
benchmark it on a variety of 21 protocols against existing
techniques.

II. RELATED WORK

Since Beddoe (2004) first applied sequence-alignment, from
the bioinformatics domain, to the APRE problem, there has
been a surge of research interest in applying cross-domain
techniques to APRE.

Tokenisation

Session
Slicing

Filters

Sequence Alignm
ent

Latent Dirichlet Allocation

K-M
eans

Value Counts

Association
Analysis

Transition
Analysis

Probabilistic Inference

LSTM
CNN

Siam
ese Network

ProsegDL, Zhao et al. (2022)

NetPlier, Ye et al. (2021)

Dasgupta et al. (2021)

Yang et al. (2020)

GrAMeFFSI, Ladi et al. (2018)

NEMESYS, Kleber et al. (2018)

Nolan et al. (2018)

Markovitz et al. (2017)

Li et al. (2015)

Netzob, Bossert et al. (2014)

ProDecoder, Wang et al. (2012)

ReverX, Antunes (2011)

Discoverer, Cui et al. (2007)

PI, Beddoe (2004)

Preprocessing Clustering Heuristics Supervised

Fig. 1. Techniques by Paper: for the listed papers (and tool name where
applicable) on the y-axis, we plot the class of technique on the x-axis. Most
methods required some degree of tokenisation beyond considering raw bytes,
such as using n-grams (Wang et al., 2012). However, Yang et al. (2020) and
Zhao et al. (2022) apply supervised-learning methods that can infer patterns
from raw bytes.

As illustrated in Figure 1, existing works apply clustering
methods (Beddoe, 2004; Cui et al., 2007; Wang et al.,
2012; Bossert et al., 2014), heuristic techniques (Markovitz
and Wool, 2017; Nolan et al., 2018; Ladi et al., 2018; Ye978-3-903176-58-4 ©2023 IFIP



et al., 2021) and supervised deep-learning (Yang et al., 2020;
Zhao et al., 2022). In particular, no method implements both
heuristic and supervised-learning techniques. The advantage of
heuristic methods, as applied to APRE, is that they can reason
with inputs of variable length; the advantage of supervised
methods is that they improve with more training data. Our
approach is the first to attempt a hybrid model that combines
the advantages of both methods into a single algorithm.

III. OUR APPROACH

Our APRE solution extends the approach by Ladi et al. (2018).
We found the following limitations of their GrAMeFFSI
algorithm:

1) “Highly-variable” fields are restricted to one-byte and
no type inference is applied.

2) Once a branch contains a single remaining sequence of
packet bytes, this is treated as a constant field and no
further boundaries are inferred.

Our Packet Field Tree (PFT) algorithm, overcomes both lim-
itations by extending GrAMeFFSI (§III-1) with a supervised
model that is fitted on Transition Aggregation N-Gram (TANG)
(Nolan et al., 2018) features and field-syntax labels for each
byte in our set of known training protocols (§III-2). When
inferring the unknown test protocol, the trained model is used
to predict the probability of each syntax label for each byte
in the tree. From these probabilities, the most likely protocol
format is inferred by our optimisation algorithm (§III-3).
1) Unsupervised Component: Our initial construction reuses
the method from Ladi et al. (2018). To have fixed-dimension
inputs for supervised-learning methods, we restrict the nodes
of the tree to 1-byte-length fields, which will later be combined
into larger fields in Section III-3.
2) Supervised Component: Supervised-learning models re-
quire features and labels to be fitted. To create separate models
for each protocol, the interrogated unknown protocol is left out
for evaluation. From the remaining 20 known protocols, we
split our data into a training and validation set of 10 protocols
each. Wireshark’s (Combs, 1998) internal syntax describes
an explicit rule for field classification. Our training set has
7 classes for type classification: ABSOLUTE_TIME, ETHER,
IPv4, STRING, UINT16, UINT32, UINT8. For each byte,
the TANG features are computed and a field type is assigned.
We fit 4 models on the respective training set: logistic regres-
sion (LR), gradient-boosted decision trees (GBDT), random
forest (RF) and linear support vector machine (LSVM) clas-
sifiers from the Scikit-learn Python library (Pedregosa et al.,
2011). To ensure the probabilistic output accurately reflects
the model’s confidence, we implement calibrated classifiers
(Niculescu-Mizil and Caruana, 2005) in Scikit-learn. The best
performing model on the validation set is chosen.
3) Optimal Field Selection: We implement a custom search
algorithm that uses the enforced field-type sizes to determine
the most likely field sequence. This is similar to the field
division algorithm from Yang et al. (2020). To reconcile the
type inference for the entire protocol structure, we resolve

cases where sibling nodes in the PFT each initiate conflicting
optimal field sequences. This is achieved by considering
the most likely field-type labelling for every subtree of the
PFT, recursing upwards to the root node, and choosing its
determination of the optimal fields. Pseudocode is provided in
Algorithm 1.

IV. EVALUATION

To measure the success of our method, we apply field-
boundary measures slightly modified from those used by Ye
et al. (2021). Rather than using their correctness measure,
we separate this into completeness and conciseness to verify
if the model is inferring more or less fields than necessary,
respectively:

Completeness:
# of inferred fields within a true field

# of inferred fields

Conciseness:
# of true fields within an inferred field

# of true fields

We use the same perfection measure as Ye et al. (2021):

Perfection:
# of inferred fields that match a true field

# of true fields

Across the 21 protocols in our dataset, we compute these
measures for each APRE model with respect to the ground
truth protocol format, as illustrated in Figure 2. For 11 pro-
tocols, GrAMeFFSI and NetPlier inferred no fields perfectly.
Our PFT provided the highest perfection for 7 protocols and
equal highest for a further 3 protocols. Our mean and median
perfection scores were higher than the next best APRE model
by 0.11 and 0.10, respectively. Whilst this may be a limited
improvement, we have gained the fidelity of field-syntax and
field-branching inference.

To provide an evaluation of the field-syntax and field-
branching inference of our model, we propose the PFT-Score.
This measure is intended to combine the following areas of
evaluation in the literature: ‘Cluster’, ‘Field Boundary’ and
‘Field Type’, by considering branching, number of nodes in
a branch, and the node syntax label, respectively. In Table I,
from the number of predicted nodes (PN), we calculate the
number of nodes required to be deleted (PND) and inserted
(TNI), to match with the true syntax nodes (TN). A node is
considered matched if the inferred and true syntax label are the
same. We combine these 4 values such that a score of 0 or 1,
means all inferred nodes are incorrect or correct, respectively:

PFT-Score: 1− ω
PND
PN
− (1− ω)

TNI
TN

,

where 0 ≤ ω ≤ 1. We equally weight the cost of an end user
inserting and deleting nodes to match the true field tree, by
choosing ω = 0.5. However, we invite the research community
to suggest reasoned weights. As seen in Table I, the PFT
scored the highest for Ethernet, TCP and EAPOL, with 0.87,
0.68 and 0.58, respectively. However, these are simplistic
protocols as indicated by the number of true nodes: 3, 5 and
3, respectively. We encourage the development of new APRE
techniques to directly improve on our PFT-scores.



A
R
P

D
H
CP

D
N
P3

D
N
S

EA
PO

L

ET
H
ER
N
ET

IC
M
P

M
od
Bu
s

M
od
Bu
sT
CP

M
Q
TT

N
BD

G
M

N
BN

S

N
TP
v4

PM
U

SM
B

SM
B2

S7
Co
m
m

U
SB

U
D
P

TC
P IP

0.0

0.2

0.4

0.6

0.8

P
er
fe
ct
io
n

Nemesys
Kleber et al. 2018

GrAMeFFSI
Ladi et al. 2018

NetPlier
Ye et al. 2021 PFT (ours)

Model Perfection Completeness Conciseness
mean median mean median mean median

Nemesys 0.12 0.12 0.52 0.58 0.74 0.75
GrAMeFFSI 0.16 0.01 0.68 0.72 0.70 0.80
NetPlier 0.16 0.00 0.85 0.94 0.51 0.50
PFT (ours) 0.27 0.22 0.80 0.83 0.62 0.71

Fig. 2. Perfection, Completeness and Conciseness comparisons. The error bars capture the range of scores due to the variation in protocol formats. In the
perfection plot, we see the results are protocol dependent, and for all models, there are cases where zero fields are correctly inferred. Given this variability,
we compute both the mean and median for each measure. Our PFT method, had the highest mean and median perfection.

Protocol

A
R

P

D
H

C
P

D
N

P3

D
N

S

E
A

PO
L

E
thernet

IC
M

P

IP M
odbus

M
odbusT

C
P

M
Q

T
T

N
B

D
G

M

N
B

N
S

N
T

Pv4

PM
U

SM
B

SM
B

2

S7C
om

m

T
C

P

U
SB

U
D

P

Predicted Nodes (PN) 63 48 8 29 4 12 18 34 5 4 28 45 23 437 284 20 65 32 4 21 11

True Nodes (TN) 9 22 7 9 3 3 6 10 5 4 14 9 9 11 8 30 33 7 5 13 4

Pred. Nodes Deleted (PND) 60 36 5 27 2 9 16 30 3 3 22 43 23 431 284 11 54 30 1 15 11

True Nodes Inserted (TNI) 6 11 4 7 1 0 4 6 3 3 8 7 9 5 8 21 22 5 2 7 4

PFT-Score (ω1 = 0.5) .19 .38 .41 .15 .58 .87 .22 .26 .40 .25 .32 .13 .00 .28 .00 .38 .25 .17 .68 .37 .00

TABLE I
PFT GRAPH-BASED EVALUATION: THE PFT INFERRED A GREAT NUMBER OF NODES FOR NTPV4 AND PMU, SUGGESTING THERE WERE MANY

‘ENUMERATION’ NODES IN THE PREFIX TREE THAT FAILED TO BE RECONCILED IN OUR ‘OPTIMAL FIELD SELECTION’ PROCESS.

V. DISCUSSION & FURTHER WORK

Wireshark not only provides syntax information, but also each
field’s semantic information. The exact same PFT approach
could be applied to infer field semantics, such as Length,
Counter and Address. Furthermore, A graph-based mea-
sure could give insight into the ‘reverse-engineering difficulty’
of a protocol and allow us to provide fair assessments of
methods with respect to where each protocol lies on the
spectrum of APRE difficulty. These challenges motivate the
need for an APRE benchmark dataset. This need is emphasised
by the further application of data-driven methods, that improve
with higher quality and larger volumes of data.

VI. CONCLUSION

We introduced the Packet Field Tree (PFT), the first hybrid
APRE approach combining heuristic and supervised methods,
and provided comparisons with existing models for 21 differ-
ent protocols. Our model offered the highest mean perfection
of 0.27, when compared to three baseline models. In addition,
the PFT produced a protocol specification in a graph format
that includes field-syntax inference. We proposed the PFT-
Score to measure the success of such inference for future
APRE methods. The contribution of syntax fidelity in our
model is critical information for an operator to build an
intrusion detection system or perform penetration testing.



REFERENCES

Beddoe, M. A. (2004). Network Protocol Analysis using
Bioinformatics Algorithms. Technical report, McAfee,
https://github.com/bitpeach/Protocol-Informatics.

Bossert, G., Guihéry, F., and Hiet, G. (2014). Towards auto-
mated protocol reverse engineering using semantic informa-
tion. In 9th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS), pages 51–62, Kyoto
Japan. ACM.

Caballero, J. and Song, D. (2013). Automatic protocol reverse-
engineering: Message format extraction and field semantics
inference. Computer Networks, 57(2):451–474.

Combs, G. (1998). Wireshark. wiki.wireshark.org.

Cui, W., Kannan, J., and Wang, H. J. (2007). Discoverer:
Automatic Protocol Reverse Engineering from Network
Traces. In 16th USENIX Security Symposium, Boston, MA.
USENIX Association.

Ladi, G., Buttyan, L., and Holczer, T. (2018). Message Format
and Field Semantics Inference for Binary Protocols Using
Recorded Network Traffic. In 26th International Conference
on Software, Telecommunications and Computer Networks
(SoftCOM), pages 1–6, Split. IEEE.

Markovitz, M. and Wool, A. (2017). Field classification,
modeling and anomaly detection in unknown CAN bus
networks. Vehicular Communications, 9:43–52.

Niculescu-Mizil, A. and Caruana, R. (2005). Predicting good
probabilities with supervised learning. In 22nd International
Conference on Machine Learning (ICML), pages 625–632,
Bonn, Germany. ACM Press.

Nolan, B. C., Graham, S., Mullins, B., and Kabban, C. S.
(2018). Unsupervised time series extraction from controller
area network payloads. In 88th IEEE Vehicular Technology
Conference (VTC-Fall), pages 1–5.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Rabet, J. (2019). Adventures in buttplug penetration (test-
ing). Technical report, DEF CON 27, Las Vegas,
defcon.org/html/defcon-27/dc-27-speakers.html#smea.

Spencer, M. (1998). Pidgin. pidgin.im.

Tridgell, A. (1992). Samba. www.samba.org.

Wang, Y., Xiaochun Yun, Shafiq, M. Z., Wang, L., Liu, A. X.,
Zhang, Z., Yao, D., Zhang, Y., and Guo, L. (2012). A
semantics aware approach to automated reverse engineering
unknown protocols. In 20th IEEE International Conference

on Network Protocols (ICNP), pages 1–10, Austin, TX,
USA. IEEE.

Yang, C., Fu, C., Qian, Y., Hong, Y., Feng, G., and Han,
L. (2020). Deep learning-based reverse method of binary
protocol. In Security and Privacy in Digital Economy, pages
606–624, Singapore. Springer Singapore.

Ye, Y., Zhang, Z., Wang, F., Zhang, X., and Xu, D. (2021).
NetPlier: Probabilistic Network Protocol Reverse Engineer-
ing from Message Traces. In Network and Distributed
System Security Symposium, Virtual. Internet Society.

Zhao, S., Wang, J., Yang, S., Zeng, Y., Zhao, Z., Zhu, H.,
and Sun, L. (2022). ProsegDL: Binary Protocol Format
Extraction by Deep Learning-based Field Boundary Identi-
fication. In 30th IEEE International Conference on Network
Protocols (ICNP), pages 1–12, Lexington, KY, USA. IEEE.

APPENDIX

Algorithm 1 Optimal Field Selection for the Packet Field Tree
Require: P (A mapping from a PFT node to a 7×1 probability

array), fields (the 7 Wireshark syntax classes used) and
field lengths (their respective byte lengths).
best prob ← zero for all nodes in PFT
best prob(Null) ← 1 ▷ Base case
best syntaxes(Null) ← []
for ncurr in PFT do ▷ node-depth highest to lowest

for f in Range(0, 7) do
f length ← field lengths[f] ▷ Inductive case
if MAX DEPTH + 1 < f length + ncurr.depth then

continue ▷ field too long, hence invalid
end if
total prob = 1
for path in ncurr.all desc paths of len(f length) do

f probs ← [P(nfield)[f ] for nfield in path]
nprevs ← path[f length].children
prob ←

∏
n∈nprevs

best prob(n)×
∏

p∈f probs p
total prob ← total prob × prob
if total prob > best prob(ncurr) then

best prob[ncurr]← total prob
best syntaxes[ncurr]← fields[f ]

end if
end for

end for
end for
OptimalPFT ← best syntaxes[PFT.root]


