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Abstract—The prevalence of phishing domains is steadily rising
as attackers exploit toolkits to create phishing websites. As
web development expertise is no longer a prerequisite, phishing
attacks have become more widespread, outpacing many existing
detection methods. Developing novel techniques to identify mali-
cious domains is crucial to safeguard potential victims online.
While most current methods emphasize the visual aspects of
phishing websites, in this paper, we investigate the underlying
structure by collecting data on style sheets and certificates from
both verified phishing domains and benign domains. Using a
token-based similarity algorithm, we group the phishing domains
into three categories and identify shared characteristics of these
domains. Our work demonstrates the feasibility of using struc-
tural similarities to identify a website created using a phishing kit.
By employing such detection, users would be able to browse the
web with a reduced risk of falling victim to malicious activities.

I. INTRODUCTION

Phishing attacks have become an increasingly prevalent
threat on the internet, with attackers manipulating victims into
providing sensitive information through malicious domains
that visually imitate trusted entities [1]. The increasing use of
phishing kits, allowing attackers with little to no web design
experience to create phishing domains, has contributed to the
rise of these attacks. These kits simplify the process of crafting
visually deceptive domains, leading to an increasing number
of phishing websites that are difficult for users to identify.

However, as phishing kits are usually designed to create a
variety of web pages similar to several target websites, the
structural similarities of created web pages are often more
distinct than visual ones. The varying appearances of the
created websites make them difficult to detect with visual-
based detection methods. This makes the analysis of the phish-
ing domain infrastructure particularly relevant, as it reveals
information that cannot be detected through visual methods
alone. Even though structural-based detection methods have
proven to be effective against phishing kits [2], phishing kits
are fast adapting to such detection methods.

In this paper, we take a closer look at the underlying
structure of domains by studying Cascading Style Sheets
(CSS) and X.509 certificates issued by a Certificate Authority
(CA). First, we describe our dataset and the differences in
our data collection process for phishing and benign domains
of varying popularity (§II). Second, we study the different
characteristics of these domains, focusing on loading time,
certificates, and style sheets (§III). Third, we describe our
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token-based similarity algorithm that groups phishing domains
based on their style sheets and provide insights into their
structural similarities and differences (§IV). Finally, we briefly
describe related works (§V) before concluding the paper (§ VI).

II. DATASET

Due to the differences in phishing and benign domains, we
use a separate data collection process for each category.

Phishing domains: For our phishing domain dataset, we use
domains obtained from PhishTank [3] where users can submit
suspected phishing domains along with their suspected target
domains. Verified and active phishing domains are updated
every hour. Additionally, other users can verify these domains,
contributing to phishing prevention efforts. We select this par-
ticular database due to its accessibility, constant updates, and
extensive list of domains [4]. Considering their typically short
lifespan, we continually acquire the phishing domains and
immediately process them. This ensures the maximum number
of active domains during our data collection and provides us
with up-to-date samples of active phishing websites, rather
than relying on outdated or offline domains in older databases.
Our phishing domain dataset consists of 4,422 domains.

Benign domains: For our benign domain dataset, we use
a subset from the top one million most popular domains on
the Tranco list [5]. This list is derived based on the 30-day
averages of four major domain lists: Alexa, Majestic, Cisco
Umbrella, and Quantcast [5]. To limit our dataset and enable
comparison with different domain popularities, we select the
first 250 domains (ranks 1-250) and the last 250 domains from
each magnitude sample (i.e., ranks 751-1,000, 9,751-10,000,
997,511-100,000, and 999,751-1,000,000). We denote these
subsets as Tranco 250, 1K, 10K, 100K, and 1M, respectively.
In total, our benign domain dataset consists of 1,250 domains.

Data collection: For both our phishing and benign dataset,
we use Selenium [6] to crawl each domain and collect the
domain and website information. At a high-level, for each
domain, we collect (1) timestamps corresponding to different
events (e.g., loading times), (2) certificate information (e.g.,
CA and validation time), (3) source URL for any style sheets,
(4) length of each style sheet, and (5) class names in each
identified style sheet. We collect data from both active and
inactive stylesheets. However, due to their extensive length,
we restrict our collection of stylesheet information to only
include class names contained within them. Additionally, we
exclude non-responsive domains from our dataset.
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Fig. 1. Load time, certificate validity period, CSS amount, and CSS size per domain group (phishing domains and benign domains of different rank popularity).
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Fig. 2. Certificates issued per CA (top-5 CA cases in phishing dataset).

III. PHISHING VS. BENIGN DOMAINS

Using our dataset of phishing domains and benign domains,
we next present a high-level comparison.

Loading time: Figure 1(a) shows a box plot of the load
time for different domain groups (i.e., phishing domains and
benign domains of different popularity as ranked on the Tranco
list). Here, we show the 10*" percentile (bottom marker),
25" percentile (bottom of box), median (middle marker),
75" percentile (top of box), 90" percentile (top marker), and
average (triangle). We observe the loading times for phishing
domains to be shorter than those for benign domains, and that
the loading time increases as the domain popularity drops. The
faster loading time of phishing domains can be explained by
them usually serving only one purpose with a small content
size, without the need for extra features or 3rd-party content.

Certificate authority: Figure 2(a) shows the usage of the
five CAs most commonly used by the phishing domains;
both for the phishing domains and the benign domains with
different popularity rankings. For the phishing domains and the
Tranco-1M group, 35% are missing a certificate (None). The
most common certificate issuer for the phishing domains is
Let’s Encrypt, and we see its increasing popularity among the
benign domains as the rank drops. For the phishing domains,
we also observe many containing Google-issued certificates
(GTS). As we will see later, this is due to many of them
redirecting to Google.com.

Certificate validity: Figure 1(b) shows a box-plot of the
certificate validity period for each domain group. Again, we
see similarities between the phishing domains and the Tranco
IM group, with a median validity period of 90 days (enforced
by Let’s Encrypt). The use of Let’s Encrypt (and also 90
days validity periods) for phishing domains is not surprising.
Since phishing sites tend to be short-lived, certificates obtained
through Let’s Encrypt may be preferred as they are free and
can be obtained using an automated process. For other groups,
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Fig. 3. Certificate validity period, CSS amount, and CSS size per CSS group.

validity periods of approximately one year dominate, although
we also observe the 10" percentile to include 90 days.

Number of style sheets: Figure 1(c) shows a box plot of
the number of style sheets observed for each domain group.
Among all groups, we observe the phishing domains to use
the least number of style sheets. This is expected due to their
simplicity, with a sole purpose of collecting sensitive data, also
reflected in the low loading time (Figure 1(a)).

Style sheets size: Figure 1(d) shows the distribution of the
style sheet sizes for each domain group. Here, we see that
the phishing domains are more similar to the intermediate
popular domains (1K-10K), possibly indicating that phishing
domains more often target the more popular domains, and
that the style sheet sizes increase slightly for the less popular
domains (100K-1M). For all domain groups, we observe a low
median (inside the boxes) and a large average (far outside the
boxes), indicating the presence of outliers with significantly
larger sizes, often due to bundled style sheets.

IV. CSS SIMILARITY

Token-based similarity algorithm: To find structural simi-
larities in style sheets, we focus on the class names from each
style sheet present on the domains in our phishing dataset and
use a token-based similarity algorithm. For each domain, we
check if any style sheet is similar to a style sheet of another
domain by comparing their Jaccard distances. If the distance is
greater than 0.9 (i.e., if class names are at least 90% similar),
we consider these to be similar. If at least five style sheet
matches between two domains, we place the matching domains
exclusively into a group denoted as G5. For the remaining
domains (i.e., those with fewer than five matches), we run the
same algorithm using a threshold of three matches and place
these matching domains exclusively into G3. The remaining
domains with fewer than three matches are denoted as GO.
This gives us three groups of phishing domains containing
different number of style sheet matches within the dataset.



Out of the domains our phishing dataset, G5 contains 1,305
domains (29.5%), G3 731 domains (16.5%), and GO 2,386
domains (54.0%). However, upon closer inspection in G5 and
G3, we exclude 609 and 176 domains, respectively, as they
redirect to Google.com or contain an error page. We next
present a structural analysis of the three CSS groups.

Certificate authority: Figure 2(b) shows the five most
common CAs for the different CSS groups. After removing
the domains that redirect to Google.com, we now see a low
certificate usage of GTS CA 1C3. Comparing G5 and GO,
we observe that GO has a lower usage of certificates but a
significantly higher usage of Let’s Encrypt.

Certificate validity: Figure 3(a) shows the certificate va-
lidity period for the CSS groups. While we observe that all
three groups use a similar range of certificate validity times
(90-365 days), we see a trend of larger validity times with
increasing matches of domains (from GO to GS5).

Number of style sheets: Figure 3(b) shows the distribution
of the number of style sheets for the CSS groups. Here, we
see large variances, showing that the number of style sheets
on phishing domains are not evenly distributed. Still, the tight
distribution in GO and G3 is interesting.

Style sheet size: Figure 3(c) shows the distribution of the
style sheet sizes for the CSS groups. Here, most notably is
G3, having a large variance and the 10*" percentile reaching
over 150kB. We observe the shortest style sheets to be used
in G5. Again, for the CSS sizes, a low median and a large
average is the result of significant outliers.

In summary, when comparing G5 to G3, we observe two
distinct approaches in their use of style sheets. G5 employs
a larger number of shorter style sheets, while G3 opts for
fewer, but more extensive ones. The style sheets of G5 suggest
that importing style sheets is a prevalent practice among
the domains within this group. Given that phishing domains
typically lack substantial content or functionality, generating
such a high number of style sheets seems counterintuitive.
On the other hand, the style sheets of G3 reflect a more
comprehensive approach, where only a select few style sheets
are imported, and the rest of the styling is consolidated into
one or two primary style sheets. This pattern is more indicative
of phishing kits being employed, where the large size of the
style sheets allows for the adaptation of structural appearances
to suit various target domains.

Subset analysis: We next look closer at the largest subset
(224 domains) of G5, containing matches with each other.
Here, all domains are subdomains of “weebly.com,” a free
web hosting service featuring a drag-and-drop builder and a
certificate issued by DigiCert. The subset contains 49 unique
style sheets, with varying lengths from 44 to 215,000 charac-
ters (majority fewer than 7,000 characters). While our method
in practice may have a high false positive rate and benign
domains may also be identified, this demonstrates the ability
to use CSS data to differentiate and categorize domains created
using the same website-building tool (e.g., phishing kits).

For the largest subset (66 domains) of G3, most domains
are primary domains. With 14 unique style sheets, this sub-

Fig. 4. Screenshot of two visually different phishing domains using similar
style sheets, detected and grouped using our token-based similarity algorithm.

set stands out with style sheet lengths between 20,000 and
150,000 characters. Here, most style sheets are not minimized,
and websites only use a small part of them, with the ability
to display visually different pages using the same style sheet.
The lack of style sheets minimization benefits phishing Kkits,
as they easily can create multiple visually diverse websites.

To demonstrate the effectiveness of identifying two visually
different websites that use the same large style sheet, Figure 4
shows two user-submitted screenshots from PhishTank for
two domains in this subset. In this case, our method effec-
tively groups the two phishing domains based on their style
sheets, despite their apparent visual differences. This suggests
that employing similar approaches to identify and compare
structural similarities could prove useful in detecting phishing
domains where visual-based detection might fail.

V. RELATED WORK

While much previous works focus on identifying and cat-
egorizing phishing domains using visual appearances like
analyzing URL [7]-[12], visual similarities [13]-[17] or DNS
information [16], others focus on the website structure [2],
[12], [18] or phishing kits [19]-[23]. Although challenging,
some works also use certificate information and try to separate
phishing domains from benign domains [21], [24]. Unlike
visual approaches, and structural approaches focusing on in-
dividual objects, we have taken an alternative approach to
study structural similarities based on the style sheet data and
certificate data. Similar to our approach, many works [1], [2],
[4], [8], [11]-[14], [16], [19]-[21], [24] use Phishtank [3] due
to its availability and extensive list of updated domains.

VI. CONCLUSION

In this paper, we have studied the feasibility of using
structural similarities to detect phishing websites. By analyzing
the characteristics of the style sheets and certificates of both
phishing and benign domains, we show that phishing domains
have distinctive characteristics, such as shorter loading times,
fewer style sheets, and shorter validity times for certificates.
Using a token-based similarity algorithm to group phishing
domains based on their style sheets, we highlight different
traits among these groups, showing the possible use of phish-
ing kits in one of the groups. Our results suggest that such
structural-based detection methods can play an important role
in detecting and preventing phishing attacks, complementing
existing visual-based detection methods.
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