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Abstract—How does the mobile experience compare between
Germany and Nigeria? There is currently no public data or
test-bed to provide an answer to this question. This is because
deploying and maintaining such test-bed can be both challenging
and expensive. To fill this gap, this paper proposes a novel test-
bed design called “AmiGo”, which relies on travelers carrying
mobile phones to act as vantage points and collect data on
mobile network performance. The AmiGo design has three key
advantages: it is easy to deploy, has realistic user mobility, and
runs on real Android devices. We further developed a suite of
measurement tools for AmiGo to perform network measurements,
e.g., pings, speedtests, and webpage loads. We leverage these
tools to measure the performance of 24 mobile networks across
five continents over a month via an AmiGo deployment involving
31 students. We find that 50% of networks face a 40-70% chance
of providing low data rates, only 20% achieve low latencies,
and networks in Asia, Central/South America, and Africa have
significantly higher CDN download times than in Europe. Most
news websites load slowly, while YouTube performs well. We
made both test-bed and measurement tools open source.

Index Terms—mobile, performance, testbed

I. INTRODUCTION

Mobile traffic has been on the rise, even surpassing its
desktop counterpart. Data from Google Analytics’ Benchmark-
ing [20] shows that mobile devices drove 61% of visits to U.S.
websites in 2020, up from 57% in 2019. Desktops were only
responsible for 35.7% of all visits in 2020, and tablets drove
the remaining 3.3% of visitors. Globally, 68.1% of all website
visits in 2020 came from mobile devices.

The research community has investigated how to improve
the performance of mobile users, e.g., by improving how fast
pages load [11]-[13], [22], [28], [32], [36], [45], or reducing
the data consumption [6], [29]. These works are motivated
by the challenging conditions which mobile users face, such
as low bandwidth or high network latencies. However, a
comprehensive and open source measurement study of mobile
operators in the wild is still lacking, as previous work [25],
[39] only focused on few mobile operators, mostly in the US
and Europe, or few applications.

Performing such study is challenging due to the lack of
a large-scale test-bed in the wild. Even the popular MON-
ROE [39] currently only spans 11 mobile networks in 4 Euro-
pean countries; further, its vantage points are not real mobile
devices and have limited mobility. Our first contribution is
a novel test-bed design, named AmiGo, which tackles these
limitations. The novelty of the AmiGo design lies in the idea to
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leverage friends (hence the name) to carry — not use — mobile
phones while travelling, guaranteeing network connectivity,
i.e., WiFi and/or mobile data when possible. We have open
sourced all code behind AmiGo [35] to help measurement
researchers deploying their own test-beds in the wild. In the
following, we summarize the main contributions of this paper.

The AmiGo test-bed: It consists of measurement endpoints,
low-end Android mobile phones (Redmi Go [8]), and a control
server. These Android devices are rooted and equipped with
termux [43] — an Android terminal emulator and Linux envi-
ronment — thus allowing fine-grained instrumentation and data
collection. The phones frequently report to the control server
(running in the cloud) their current status, e.g., connectivity
(WiFi or mobile) and battery level. The controller monitors the
phones’ health, schedule experiments, and collect data. Finally,
a mobile application allows to interact with the “amigos”, e.g.,
to pause an experiment or show notifications.

Full stack networking experiments: We have developed and
open sourced [35] several tools to perform measurements via
termux: speed-tests, traceroutes, DNS queries, HTTP GET
of popular CDN objects, webpage loads, and YouTube tests.
By combining these tools, we measure multiple metrics across
the stack, e.g., mobile bandwidth, latency to DNS services and
content providers, up to user experience when browsing or
watching videos.

Measurement campaign: We recruited 31 university students
to participate to (an instance of) the AmiGo test-bed while
traveling back to 24 different countries during the 2021 winter
break (with three countries having more than one student).

Overall, this allowed us to collect data across 24 mobile

networks. Our key findings are as follows:

e Slow mobile operators — download speed wise — tend to
be consistently slow. In contrast, fast mobile operators are
less consistent. It follows that, even with fast operators,
applications that require high bandwidth may suffer from
frequent slowdowns.

e Exceptional latency (<20ms) is limited to few mobile net-
works (less than 20%) and content providers (Cloudflare and
Google). Amazon is most likely to suffer from less desirable
latencies (>150ms) and highly correlated with long network
path, suggesting a smaller content distribution network.

e Apart from few African operators, DNS resolution on
mobile mostly requires less than 100ms. Several operators
(e.g., Telenor in Pakistan, IND Airtel in India, and Telcel in
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Fig. 1. Several components of the AmiGo test-bed.

Mexico) sometimes rely on Google DNS, we conjecture in
presence of network disruptions.

e News websites are often too heavy for low-end mobile de-
vices, especially in mobile networks from developing regions.
Given the importance of a diversified news outlet, they should
prioritize optimizing their website to provide a better user
experience for all users, regardless of their device or location.
In contrast, YouTube shows better performance across the
board.

II. TEST-BED ARCHITECTURE

This section describes the AmiGo testbed, which consists
of a control server to remotely manage mobile measurement
endpoints (MEs). Our design is generic and can be re-used
to build in-house testbeds which aim at controlling multiple
devices deployed in the wild. We have thus opened source our
code [35] to help measurement researchers deploying similar
testbeds in the wild.

A. Control Server

The control server has three main tasks. First, it monitors
the status (battery level, GPS location, etc.) of the MEs.
Second, it instruments MEs with automation instructions or
new commands/actions which are not part of their default
behavior, e.g., open a reverse SSH tunnel to enable debugging.
Third, it maintains a dashboard visualizing the current status
of devices and ongoing experiments (see Figure 1(a)).

The control server is implemented in Python and provides
restful APIs which the MEs call to: 1) report their current
status (e.g., battery level and connectivity), and 2) retrieve
instrumentation code. The Python code also maintains a
postgres [40] database which stores both device status
updates and instrumentation code, i.e., shell commands to
be executed in termux (see below). Finally, Graphana [33]
is used to build a visual dashboard allowing to identify
potential issues with test-bed and/or experiments.

B. Measurement Endpoint (ME)

Rationale and Overview: Our rationale is to use a real
mobile device as a ME. Mobile devices are easy to carry, thus
enabling experiments across a plethora of networks and realis-
tic conditions. They support multiple access networks, which

Name Description

vrsNum code version number

timestamp epoch timestamp at time of report
uid unique device identifier
airplaneMode status of airplane mode

googleStatus status of Google authorization
uptime how long has the device been running
isPaused whether the user pause our mobile app
freeSpaceGB available space on device

cpuUtilPer current CPU utilization

memlInfo available memory

batteryLevel percentage of battery available
isCharging whether the device is charging or not
gpsLoc current GPS location

networkLoc current network-provided location
foregroundApp current app in the foreground
isNetTesting status of network measurements
wifilP WiFi IP address

wifiSSID SSID of WiFi network connected to
wifiQual quality of WiFi network signal
todayWiFiData data used on WiFi for the day
mobilelP mobile IP address

mobileSignal quality of mobile network signal
todayMobileData | data used on mobile for the day

TABLE I
SUMMARY OF DATA REPORTED BY A MEASUREMENT ENDPOINT TO THE
CONTROL SERVER WITH A 5 MIN FREQUENCY.

allows flexibility for both remote instrumentation (e.g., via
WiFi) and experiments (e.g., WiFi or mobile, even switching
between 3G and 4G). Mobile devices also support a wide range
of experiments, e.g., from ping to Web browsing. Finally,
the data collected via a real device is representative of what
experienced by actual users in the wild.

We chose a Redmi—-Go [8] as AmiGo’s ME. This device
is based on Android which allows full instrumentation while
being the most popular operating system in the world [16]. It
is also a cheap device (retail price of $70), which is paramount
when the goal is to realize a test-bed with a large number of
MEs. Note that despite being a low-end device (1.4 GHz quad-
core CPU and 1 GB of RAM) our benchmark shows little to no
impact to most measurements (with the exception of webpage
loads, see Section V). Third, it can be easily rooted, allowing
full control via termux [43], an Android terminal emulator
and Linux environment. This gives us the flexibility to write



any instrumentation, from low level utilities like ping to app
automation, and data collection, even when root privilege is
needed. We later discuss how this extends to other devices.

Design and Implementation: We refer to the core code of the
ME as AmiGo’s agent. The agent has overall three key tasks.
First, it monitors the endpoint resources, e.g., battery level and
connectivity. Second, it interacts with the control server, either
to report its state (see Table I) or to collect instrumentation for
new experiments to run. We leverage a combination of classic
Linux tool (e.g., ifconfig), Android tool (e.g., dumpsys),
and termux tools (e.g., termux-location) to populate the
state information which is reported to the control server every
5 minutes. Third, it controls when to run a list of pre-installed
experiments by matching a set of rules, e.g., only run with a
given frequency when on mobile. Each experiment consists of
a shell script, thus allowing for easy customization of the
ME’s behavior (see Section III-A).

We use cron to ensure the agent is started at each phone
reboot, e.g., in case the device running out of battery. Further,
we use it to force a device reboot each night to “clean”
potential wrong states reached during any of the experiments.
We use the Boot Apps Android app [18] to ensure termux
is launched at reboot, which in turns enable cron and sshd.

Each device is instrumented with a private SSH key used
to: 1) pull code updates from github [5], 2) open a reverse
tunnel to the control server, if requested to do so, which
is useful for debugging misbehaving MEs. To guarantee a
consistent state across all devices — and speedup the test-
bed preparion job — the installation of every app and termux
package is automated and relies on local packages provided by
APKMirror [7]. Figure 1(c) shows the automated preparation
of multiple MEs.

Mobile Application: It acts as AmiGo’s GUI and accom-
plishes three tasks. First, it shows the device identifier for
simple communication between test-bed maintainers and a
volunteer carrying the ME in presence of a concern. Second,
it allows to pause an ongoing experiment. This is required
when the volunteer needs to interact with the device, e.g., to
connect to a WiFi network. Without this feature, any ongoing
experiment could collide with the user causing potential issues.
Finally, it notifies the user when the mobile phone requires
charging (see Figure 1(b)), which is often neglected by vol-
unteers (see Section VII).

Google Account: Android devices require a Google account.
We have contacted Google asking for a testing account, with
no luck. We have thus setup each device with the same
Google account, given that no limitation on the number of
devices exists. This has triggered random requests to verify our
account, by entering its username and password. Fortunately,
this operation can be automated by detecting the presence of
the MinuteMaidActivity when launching YouTube.

Limitations: The main limitation of the AmiGo agent is that
it currently targets a specific Android phone: Redmi Go. We
purposely focused on one device to enable fair comparison
of results across different mobile operators. Still, it would be
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(a) CPU utilization per test. (b) Memory utilization per test.

Fig. 2. Benchmarking of CPU and memory usage at the ME (Redmi—-Go with
1.4 GHz quad-core CPU and 1 GB of RAM). Each bar reports the average
CPU/memory usage per networking test. Errorbars report standard deviation.

interesting to extend to more recent and powerful devices, e.g.,
to investigate 5G connectivity. Extending to other Android
devices is simple — as long as they can be rooted — as
AmiGo’s agent only relies on low level instructions shared
among Android devices. Extending to iOS would also be of
interest although hard due to its limited automation capabilites.

A potential additional issue with the device selection is that
it might have an impact on the measurements performed, due
to its limited hardware (1.4 GHz quad-core CPU and 1 GB of
RAM). We have benchmarked CPU (Figure 2(a)) and memory
(Figure 2(b)) usage when performing the measurements de-
scribed in Section III-A. CPU-wise, most experiments are not
concerning given that the device’s CPU is rarely under stress,
only in some cases YouTube approaches 90% CPU usage.
The same is not true for memory usage which is instead fully
occupied for both browser and YouTube experiments. This
implies that higher level experiments can be partially impacted
by the device we chose. We acknowledge this as a potential
limitation due to the need to keep the cost per device low, and
reach a large number of mobile networks.

III. DATA COLLECTION

This section describes the experiments we devised to mea-
sure the performance of mobile networks using the AmiGo
test-bed. We instrument the agent to schedule experiments
every 30 minutes when the ME is only connected to a mobile
network. Note that we asked volunteers to connect the ME
to their home WiFi as a simple mean to avoid running most
experiments from their home, where we expect them to spend
the majority of the time. We further monitor data consumption
to avoid consuming more than 4 GB per day. As for the test-
bed code, we have also open sourced it for each experiment.

A. Experiments Description

Access Characteristics: Mobile networks are characterized
by three main metrics: download/upload speed, latency, and
loss probability. We use a combination of tools to compute
each metric. First, we measure download/upload speeds using
Speedtest CLI [38], a Linux-native Speedtest tool backed by
Ookla® Next, we derive network losses from pcap files cap-
tured via t codump while loading popular webpages. Finally,



(a) Germany (b) Jamaica

(c) Tunisia (d) Portugal

Fig. 3. Visualization of AmiGo volunteers mobility in four countries: Germany, Jamaica, Tunisia, and Portugal.
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Fig. 4. Geographical distribution of the AmiGo test-bed deployment between
December 2021 and January 2022.

we use mtr [30] — a network diagnostic tool combining ping
and traceroute — to derive latency and network path towards
popular content providers (Amazon, Facebook, Google,
YouTube) and DNS providers (Google and Cloudflare).
The rationale, as suggested in [17], [50], is that these providers
employ edge nodes which are commonly close to the users.

DNS Performance: DNS is a critical component of every
mobile application. We instrument our MEs to use the DNS
provided by the mobile network they are connected to. We
evaluate DNS on mobile using statistics extracted from pcap
files of webpage loads.

CDN Performance: A Content Delivery Network (CDN) is
a popular networking tool used to accelerate content retrieval,
thus improving the user experience, by moving popular content
close to a user’s network location. We have identified a
popular JS file (jquery.min. js version 3.6.0, or the last
version at the time of our measurement campaign) which
is hosted at multiple CDNs (Cloudflare, Facebook
CDN, Google CDN, Highwinds CDN, jsDelivr, and
Microsoft Ajax CDN). Note that jsDelivr advertises
optimal performance by matching each request to an “optimal”

CDN based on uptime and performance [27].

We iterate through these CDNs fetching jquery.min. js
using cURL instrumented to report the total download time.
We further collect HTTP headers since, for some CDNs,
they report whether the file was found in a cache, or not.
Specifically, Cloudflare, jsDelivr, and Microsoft
Ajax report cache HITs or MI1SSes using two HTTP
response header fields: x—cache and cf-cache-status
(from Cloudflare [15]). Fastly also use the x—cache
header to report (e.g., ‘HIT, MI1SS’, ‘MISS, HIT’) where
a cache hit or miss has occurred: either at the edge (second
entry) or at the shield (first entry). A shield is a mid-tier
caching layer between origin server(s) and edge servers [21].
Since jsDelivr relies on a network of CDNs, including
Fastly, in some cases it also reports where a cache hit/miss
has occurred.

Application Performance: Web browsing and video stream-
ing are two popular mobile applications which are easy to
automate, differently from even more popular apps like TikTok
or Instagram. For Web measurements, we load several news
websites via Google Chrome, namely: cnn.com, wsj.com,
bbc.com, foxnews.com, and washingtonpost.com.
During a page load we record pcap traces and a video which
is then fed to visualmetrics [49] to extract performance
timing metrics such as SpeedIndex [47] — which reports the
time it takes for the visible parts of a webpage to be displayed.
For video streaming, we automate YouTube. This automa-
tion requires interacting with its GUI and is thus specific
to the Redmi Go, or better the version of YouTube under
test (17.43.46) and a device with a screen resolution of
720x1280 pixels. Extending to other devices is straightfor-
ward, given the logic of the automation does not change,
but it requires some manual verification. YouTube allows to
enable “stats-for-nerds” [24] which report information like
buffer occupancy and number of lost frames. Such infor-
mation is reported on screen, over the video, and can then
be copied on the clipboard and dumped to a file. We also
collect pcap traces while performing YouTube experiments.
We used a (up to) 4K video specifically produced for testing
(https:/fwww.youtube.com/watch ?v=TSZxxqHoLzE).

B. Data Overview

World Coverage: We have deployed AmiGo MEs via 31
university students while travelling back home during the



10 bio €10
Y] —— Downlink | e Y] —— Downlink i) —— Downlink
g 0.8 ..... Uplink g 0.8 ..... Uplink g 0.8 1
2061 e 2 0.6 2 0.6
s s s
x 0.4+ x 0.4+ w 0.4+
5 0.2 5 0.2 5 0.2
o o o

0.0 T T T T 0.0 T T T T 0.0 T

100 80 60 40 20 0 100 80 60 40 20 0 100 80

% of speed tests with
slow speed (<= 15Mbps)

% of speed tests with
average speed (between 15 & 30 Mbps)

% of speed tests with
fast speed (>= 30 Mbps)

Fig. 5. Speed tests’ measurements results showing the CDF of percentage of mobile networks with downlink and uplink speeds quantified as: (a) slow

(<=15Mbps), (b) average (between 15 and 30 Mbps), (c) fast (>=30Mbps).

2021 winter break. The students were recruited based on the
home countries they were traveling back to, as well as their
willingness to carry the phones as much as possible. The
data collected spans 31 cities in 24 countries (see Figure 4)
between December 15th, 2021 and January 30th, 2022. Mul-
tiple students travelled to different cities in three countries:
4 to Pakistan, 3 to India, and 3 to Nepal. The students
were instructed to purchase a mobile SIM card from their
destination with a data plan around 40/50 GB. The choice of
the mobile network operator was left to the students based
on their own convenience. The students did move within each
country, sometimes even going to multiple cities. Figure 3
shows sample users’ movements in four different countries.

Mobile Access Type: Overall, the vast majority of the mea-
surements were performed on 4G: 60% of the phones had 90%
of their measurements performed on 4G. Nevertheless, 10%
of the phones never encountered a 4G mobile network during
their tests. The remainder 30% of phones had 40% - 90%
of their tests performed on 4G.

User Mobility: We use GPS data to monitor user mobility.
Most users were quite mobile, exploring more than 200 km
during the measurement campaign and spending about 100 hrs
outdoor (roughly 4.5 days). Some users ventured in trips;
for example, one user went from France to Spain, resulting
in being located 700 km away from what was marked as
the home location. In few cases, users spent very little time
outside due to safety restrictions caused by the rapid spread
of Omicron (COVID-19 variant) [48].

Data Usage: Data consumption depends on two factors: 1)
how much users move, 2) the 4 GB limit per day we set.
The rationale of the latter limit was not to consume more than
40/50 GB (the target data plan we recommended acquiring)
over a 10/15 days period (the average expected travel dura-
tion), so to avoid the inconvenience to recharge the data plan.
Overall, our daily limit was very conservative since the median
total data consumption was close to 6 GB. Few participants
(Poland and Germany) consumed a lot of mobile data: 44.9 GB
(over 44 days) and 26 GB (over 29 days), respectively. This
was driven by high user activity and increased trip duration
due to COVID-related travel restrictions.

C. Ethics

Given that we recruited participants to carry instrumented
mobile devices (AmiGo MEs), we obtained an institutional
review board (IRB) approval (HRPP-2021-185) to conduct
these studies. In addition, one of the authors have completed
the required research ethics and compliance training, and was
CITI [4] certified. Participants were also provided with a con-
sent form to read, and sign, acknowledging their willingness
to participate. Further, they were given the opportunity to ask
questions about the study and what data was being collected.

We asked participants to carry AmiGo MEs, charge them,
install a mobile data sim-card, and connect them to WiFi
when possible. We also instructed the participants not to use
the mobile phones or add any of their personal information
or logins. As such, we do not collect any unidentifiable,
sensitive, or personal information about the participants. The
only foreseeable concern that might put our users’ privacy
at risk is the collection of the phones’ GPS data, which in
principle can reveal the participants movements. We informed
the participants beforehand about this concern and we obtained
their written consent that they approve this collection.

IV. NETWORK CHARACTERIZATIONS

This section analyzes low-level networking experiments,
e.g., speedtests, traceroutes, and DNS lookups. For a given
metric, our data-set contains multiple data points for each
mobile operator. Instead of plotting one Cumulative Distri-
bution Function (CDF) per mobile operator, to ease visibility
we plot the CDF of the percentage of mobile networks for
which a target metric is within a range. This analysis, inspired
by Chrome User Experience Report (CRuX) [23], allows to
comment on the probability, expressed in number of tests, that
a certain condition is met at a fraction of the mobile networks.

Speed Tests: Figure 5 shows the CDF of the percentage of
mobile networks that have slow, average, and fast downlinks
(solid) or uplinks (dashed). A slow downlink/uplink is charac-
terized by a speed smaller than 15 Mbps; average refers to a
speed between 15 and 30 Mbps. Finally, fast refers to a speed
higher than 30 Mbps. These thresholds are drived form the
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SpeedTest Global Index which ranks 140 operators by their
upload/download speeds [37].

As also reported in [37], Figure 5 shows that slow speeds
are more likely on uplink than on downlink, e.g., 90% of the
uploads were slow for 50% of the mobile networks (whereas
such frequent slow downloads only happen for 25% of the
mobile networks). Average and fast speeds are instead more
likely in download than upload. For both upload and download
speeds, slow tests are more consistent, meaning that a slow
mobile operator tends to be slow for the majority of the test,
e.g., 40% of the operators have constant speed lower than
15 Mbps for 80-100% of the tests (e.g., Flow in Jamaica).
Conversely, fast mobile operators are less consistent, i.e.,
most have less than 50% of the measurements which can be
considered fast (e.g., Telcel in Mexico). This result suggests
that applications which constantly require high bandwidth,
e.g., volumetric videos or virtual/augmented reality, might
suffer from frequent slowdowns.

Mtr Pings and Traceroute: Figure 6 (a), (b), and (c) show
respectively the aggregated results based on the quality of the
mobile network latency tests [19]: 1) exceptional ping which
falls below 20 ms, 2) good to average ping between 50 and
100 ms, and 3) less desirable ping which exceeds 150 ms.
These figures also show the latency CDFs split based on the
tested domain: Amazon, Facebook, Google, YouTube,
Cloudflare DNS, and Google DNS.

Figure 6 (a) shows that exceptional latencies are rare.
Only a small percentage of mobile networks (i.e., 20%) have
exceptional latencies to about four of the tested servers:
Cloudflare (40% of tests), and Google products (DNS,
YouTube, and search engine) with 20-25% of the tests. Con-
versely, both Facebook and Amazon have nearly no tests
with exceptional latencies. For the “good to average” pings,
apart from Cloudflare and Amazon, Figure 6 (b) shows
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Fig. 7. Box plots of DNS lookup times per mobile operator, comparing when
the phones used local DNS servers (provided by the mobile operator) versus
Google DNS, if available. Note that Google DNS was not setup on the phone,
but likely used by the mobile operator in presence of outages or high load.

that latency to all other popular providers are similarly split
between mobile networks and number of tests. For example,
20% of mobile networks have about 60% of their tests ranked
as “good to average”; this suggests that such ping values
are mostly due to network conditions at the mobile networks
rather than provider performance. Amazon and Cloudflare
are outliers due to their limited number of samples in this
category: indeed, the majority of their samples fall under
exceptional pings (in the case of Cloudflare) and less
desirable (in the case of Amazon), for which 50% of mobile
networks have 80% less desirable pings. To better understand
the previous results, we investigate the length of the network
path between mobile users and each measured service. Fig-
ure 6 (d) shows that Cloudflare and Amazon have the
shortest and longest number of hops to our mobile users, thus
confirming their latency results observed above.

Domain Name System: Figure 7 shows box plots of DNS
lookup times—extracted from Web browsing tests— per mo-
bile operator. Blue box plots refer to lookup times obtained
when a local (provided by the mobile operator) DNS is used;
orange box plots refer to lookup times obtained via Google
DNS—identified by 8.8.8.8 or 8.8.4.4 Mobile phones
were instrumented to receive the DNS configuration from their
operators; it follows that several operators (e.g., Telenor in
Pakistan, IND Airtel in India, and Telcel in Mexico) sometimes
rely on Google DNS. Note that this event is quite rare (less
than 1% of the measurements) with the exception of Telkom
(Kenya), where Google DNS was reported in 27% of the
measurements.

Figure 7 shows that the median duration of DNS lookups
with operator-provided DNS is quite fast, about 40ms. This
is likely due to the high popularity of the websites under
test (see Section III-A), which can be resolved from the DNS
cache. When comparing mobile operators, their DNS achieve
overall similar performance. Conversely, Google DNS lookups
are much slower (up to a 10x increase for Telcel in Mexico).
We conjecture that Google DNS is used as a backup solution
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in presence of outages or high load, since its usage was rare
in our experiments.

Content Delivery Networks: We study the performance of
each mobile operator towards six popular CDNs by down-
loading the last version of jquery.min. js hosted by each
of them. On average, this file was downloaded about 117 times
per CDN; all downloads were carried out over HTTP/2 with
TLSv1.3, using various cipher suites.

We start by comparing the performance of each CDN
globally, i.e, aggregating measurements from 31 mobile
networks (see Figure 8(a)). When possible (Cloudflare,
jsDelivr, and Microsoft Ajax), we differentiate be-
tween a cache HIT (solid box plots), and a cache MISS
(hatched box plots), which are identified using two HTTP
response header fields: x—cache and cf-cache-status
(for Cloudflare [15]). The lack of hatched box plot for
Microsoft Ajax indicates absence of cache misses, while
for the remainder CDNs no distinction was possible.

If we focus on cache HIT, Figure 8(a) shows that the fastest
download times are achieved via jsDelivr, which saves a
minimum of 100 ms (when compared with Cloudflare)
and up to 700 ms (when compared with Highwinds). Our
results confirm that jsDelivr does indeed perform the best
as they claim — since it relies on a network of CDNss. If we fo-
cus on cache MISS, the download time increases significantly,
about 3x for both Cloudflare and jsDelivr. Still, even
in presence of misses both CDNs manage to be faster than
Highwinds.

Next, we focus on cache HIT only and we analyze the
CDN performance by mobile network. Given we identified
clear patterns by continent, Figure 8(b) shows one box plot
for the total download time per continent: Europe, Australia,
Asia, Central and South America, and Africa. The figure
shows that, regardless of the CDN, the median download time
grows by 10x (from 200-300ms up to 1-2 seconds) when
comparing Europe and Africa. This result is the realization of
networking effects we studied in the previous sections, such

as high latencies and losses. For example the median latency
(mtr to popular services as in Figure 6) for Ethio Telecom
(Ethiopia), MTN Connect (Nigeria), and Telkom (Kenya) is
147ms, 108ms, and 149ms, versus 15ms, 23ms, and 50ms,
in Play (Poland), Vodafone.de (Germany), and Lycamobile
(France).

When comparing different CDNs, we confirm the high
performance achieved by jsDelivr, which is only out-
performed by Google and Microsoft Ajax in Africa.
We can also see that Highwinds is competitive in Europe,
Central and South America, and Africa, but suffers from very
bad performance in Australia and Asia which skew its results
when aggregating all locations (see Figure 8(a)).

Finally, Figure 9 shows how the MISSes are distributed
across both Cloudflare and jsDelivr for the mobile
networks that experienced cache MISSes. The results shows
that for Cloudflare there is a very small probability of
having a cache MISS. In contrast, for jsDelivr it can be
observed that a number of mobile networks (Ethio Telecom
in Ethiopia, Telkom in Kenya, Vodafone in Portugal, and SK
Telecom in Korea) have almost a 100% cache MISSes for all
tests performed at these locations.
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Cloudflare and jsDelivr CDNs.
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V. APPLICATION PERFORMANCE ANALYSIS

Web Browsing: Figure 10 shows Chrome UX style-based
results for speed index [9] split by tested news website
(see Section III-A for more information). We use Google’s
lighthouse definition [47] of page speed: fast (<= 3.4s),
moderate (between 3.4s and 5.8s), slow (>= 5.8s).

Figure 10(a) shows that fast webpage loads are rare: only
10% of the mobile networks have 10% of webpage loads faster
than 3.4 seconds for four out of the five visited news web
sites. The only exception is wsJj.com which loads fast for
20% of the measurements from 40% of the mobile networks.
Figure 10(b) also shows a slight increase in the number of
networks with a significant number of moderate page loads:
20% of the networks have nearly 55%, 25% and 20% of their
web tests considered to be of moderate speed for wsj.com,
foxnews.com, and washingtonpost . com, respectively.
Conversely, bbc.com and cnn. com still only have 10% of
fast page loads in 10% of the mobile networks. Finally, 80%-
100% of the webpages’ tests are slow for 70% of the mobile
networks (Figure 10(c))— except for wsj.com, again.

The reason of such slow loading times is that news websites
are quite heavy for a low-end mobile device, i.e., high CPU
and memory usage. Not all news websites are the same,
with ws j . com largely outperforming the rest, and cnn.com
trailing, i.e., it loads slow 90% of the times for 90% of the
mobile networks. This is because cnn . com is one of the most
complex pages with many embedded elements and recursive
JavaScript. Given the importance of a diversified news outlet,
such performance gap might have an impact on the user which
goes far beyond their quality of experience.

Video Streaming: We now focus on video streaming via
YouTube. Overall, a good streaming quality (480p—720p) is
measured across most mobile networks. Lower quality levels
are rare, with the exception of Lycamobile (France) and Claro
(Colombia) where most streams only achieve 240p and 360p.
We did not record any video stream at maximum resolution
(1080p or 5 Mbps), despite many mobile operators offer
download speeds which should support such quality. If we
focus on the buffer playtime for mobile networks were high

video qualities are detected, we observe median buffering
time comprised between 30 and 60 seconds, which should be
plenty to motivate the player to switch to a higher quality. We
conjecture that the limited device resources have an impact
on such switch, or some mobile operators adopt rate limits —
which is not unlikely, as discussed in [34].

We next generalize the above observations by analyzing the
percentage of times that a stream quality is detected at each
mobile operator (see Figure 11). The figure shows that 1080p
is indeed never detected, as discussed above, and that a poor
quality (144p) is rare: only 20% of the mobile operators have
up to 20% of streams at this quality. Indeed, the probability of
higher quality streams tend to increase with the quality, e.g.,
half of the operators have at least 40% of the streams at 720p.

The above result suggests that YouTube performs much
better across the different mobile networks in comparison
to other previous conducted tests such web browsing. Given
that YouTube quality does not highly depend on the network
latency but rather on the available bandwidth (unlike web
browsing). Ironically, we live in a world where it is much
easier to watch a dancing cat' rather than browsing a news
article online.

VI. RELATED WORK

To the best of our knowledge, the closest related work to our
study is [25] by Hung et. al. This work studies which factors
impact user perceived performance of smartphones’ network
applications (Web browsing, video streaming, and voice over
IP). The study was conducted in 2010 over the 3G networks
of four major U.S. mobile operators: AT&T, Sprint, Verizon,
and T-Mobile. In contrast, our paper studies and compares
the performance of 24 operators across the globe. Further,
we focus on 4G and introduce a broader set of networking
experiments. Last but not least, we also propose a novel test-
bed design based on regular Android devices.

With respect to test-bed design and deployment, MON-
ROE [39] is the closest approach to AmiGo. MONROE is

Thttps://www.youtube.com/watch?v=NUYvbT6vTPs
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a measurement platform whose goal is to provide open-access
assessment of the performance and reliability of mobile oper-
ators. MONROE is currently deployed across eleven mobile
networks in four European countries. The core measurement
component is called a node which is equipped with a Debian-
based single-board computer plus three LTE modems con-
nected to different providers. A centralized scheduling system
allows MONROE users to post custom-made experiments to
distributed nodes and remotely collect measurement results.
In addition, each node independently executes certain back-
ground experiments, such as RTT measurements, to MONROE
servers. Other large-scale research measurement platforms
such as RIPE Atlas [41], BISmark [42], PlanetLab [14], and
GENI [10] share common objectives with MONROE but are
not designed for mobile environments.

Finally, crowd-sourcing approaches like Netalyzr [31], Net-
Piculet [46], OpenSignal [2], RootMetrics [3] or MobiPerf [1]
use custom-designed apps for measuring mobile operators
via crowdsourcing. AmiGo uses a different approach since it
allows full control of the device, e.g., even execution of classic
Linux applications via termux, with no user interference.
Note that while the only role of AmiGo’s volunteers is to
carry the device, provide connectivity opportunities, and keep
it charged, they occasionally interferred with our experiments
as discussed in the next section.

VII. CONCLUSION AND LESSONS LEARNED

The lack of public data or test-bed makes it difficult to
compare the user experience from mobile operators around
the world. This paper has proposed a solution to this problem
by introducing a new test-bed design called AmiGo. The
design relies on travelers carrying mobile phones to act as
measurement endpoints (MEs) and run a set of desired ex-
periments. This design makes AmiGo easy to deploy, while
offering realistic user mobility and devices. All code behind
AmiGo [35]has been open sourced to help measurement
researchers deploying their own test-beds in the wild.

To demonstrate the AmiGo capabilities, we have deployed it
across five continents leveraging 31 students, and investigated

the performance of 24 mobile networks. Among the many
observations, we find that being consistently fast is challenging
for a mobile operator, both in term of download speed and
access latency. It follows that applications requiring high band-
width and low latency may suffer from frequent slowdowns.

AmiGo was also employed in [44] to examine the effective-
ness of various videoconferencing applications across WiFi
and mobile networks worldwide. The study discovered that
mobile clients demonstrate comparable patterns to fixed-access
clients concerning round-trip time and video rate. Neverthe-
less, the overall quality of experience (QoE) at the application
level is significantly affected by the limited processing power
and screen size of mobile devices. AmiGo was also used
in [26] to assess the performance of the two most popular lo-
cation tags (Apple’s AirTag and Samsung’s SmartTag) through
in-the-wild experiments conducted by having these tags as part
of the vantage points carried by the amigos.

During the experiments conducted in this paper, we encoun-
tered a number of issues/challenges that we summarize below.

Battery Charging is Crucial: Testing mobile networks can
place a considerable strain on battery life, particularly for low-
end devices such as the Redmi-Go. As participants carried
ME:s without frequently interacting with them, it was common
for the devices to run out of power unnoticed. To address this
issue, we devised a strategy that would halt experiments when
the battery level dropped below 15%, subsequently notifying
participants through the installed app (see Figure 1(b)). This
solution led to a 50% reduction in the amount of time mea-
surement endpoints were unreachable due to dead batteries.

Debugging in the Wild: Given the highly dynamic nature
of the AmiGo test-bed, we frequently encountered various
unexpected issues. For example, ISP-specific policies or unan-
ticipated participant behaviors (see below) that interfered with
our measurements. To address these concerns, it was crucial
to establish remote access to the MEs. Given all the devices
in the field were situated behind ISP NATs, we leveraged a
reverse SSH tunnel requested as an automation instruction (see
Section II-A).

Unexpected Participants Behaviors: AmiGo’s MEs do not
require user intervention, apart from setting up WiFi or mobile
connectivity. However, we still had to deal with unexpected
user interactions with the MEs. For example, while we ensured
no sound is played by YouTube, some users opted to set
their device in “no-disturb” mode which triggered a bug in
our code when disabling audio. In turn, this caused some
of our experiments to play sound causing distress (and com-
plaints) in our volunteers. Similarly, some users turned off the
screen of their device when they noticed an experiment was
running, which could impact our results. We heavily rely on
data processing and visual inspection of collected screenshots
to ensure proper data sanitization. During the measurement
campaign, we further sent reminders asking our volunteers to
avoid interacting with the device, if possible.
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