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Abstract—The QUIC protocol is a new reliable and secure
transport protocol that is an alternative to TLS over TCP. How-
ever, compared to TLS, QUIC obfuscates the connection hand-
shake and the server name indication domain, making a simple
inspection more challenging. The classification of QUIC traffic
has also received less attention than that of TLS. In this work, we
present a comprehensive study aiming to explore the challenges
of QUIC traffic classification. We selected three models: 1) multi-
modal CNN, 2) LighGBM, and 3) IP-based classifier, and evalu-
ated their properties using a large one-month CESNET-QUIC22
dataset with 102 web service labels. The developed classifiers
reached up to 88% accuracy and set the new baseline in fine-
grained QUIC service classification. Moreover, the real nature
of the dataset and its long time span allowed us to collect a
number of insights and measure the classifiers’ performance in
the presence of data drift.

Index Terms—Traffic classification, QUIC, Deep learning, En-
crypted traffic, Computer network

I. INTRODUCTION

The QUIC protocol is a new reliable transport protocol
standardized two years ago in 2021, which is already receiving
enormous traction in adoption. It is implemented in Chrome-
based browsers as well as in Firefox, and large companies,
such as Google, Meta, or Microsoft, use it to deliver their most
popular services. Moreover, we can observe the transition of
TCP-based protocols to QUIC—for example, the QUIC-based
SMB (Samba) [1] or the decision to use QUIC as the transport
protocol in HTTP/3 [2], which suggests it will become the
standard option for reliable and secure web communication.

Apart from various features that make QUIC superior to
TCP, the most significant for network monitoring and measure-
ment is the enforcement of secure communication—it is not
possible to use QUIC without encryption. All QUIC communi-
cations are protected with TLS; thus, QUIC payload inspection
is impossible without decryption middleboxes. Moreover, the
QUIC connection handshake, which reuses the structures of
the TLS handshake, such as ClientHello, ServerHello, and Cer-
tificate messages, is obfuscated. This obfuscation is performed
as AES-GCM encryption using a specific key that the receiver
can derive from unencrypted connection parameters [3]. As a
result, the monitoring of QUIC traffic is difficult because there
are no available plaintext fields related to the communication
running inside the encrypted tunnel. TLS is also moving in
this direction and is removing available plaintext information;
TLS 1.3 moved server certificates into the encrypted part of
communication, and there is the TLS Encrypted Client Hello

extension draft, which enables clients to encrypt the entire
ClientHello messages.

To handle QUIC traffic, detection systems thus need to
de-obfuscate (i.e., decrypt) the QUIC handshake messages to
obtain the internal TLS messages, which can then be analyzed
as the standard TLS. This decryption process must be im-
plemented in the monitoring software and puts an additional
load on the infrastructure. The decryption process also must
support all the variants (IETF, gQUIC, Facebook’s) of the
QUIC protocol and must be updated when a new QUIC version
is released. Moreover, with the expected increase in QUIC
traffic, it might not be feasible for monitoring infrastructure
on the service-provider level to handle decryption on such
a scale. These negative factors of the handshake decryption
create an interesting and practical research challenge to find
novel approaches for effective QUIC traffic monitoring without
handshake decryption.

Recent works [4]–[6] on encrypted traffic classification
show promising results in fine-grained TLS service classifica-
tion. The motivation behind TLS service classification arises
from a number of reasons, such as SNI faking [7], Encrypted
Client Hello [8], QoS prioritization, or the enforcement of
network-usage policies. All of these reasons are also applica-
ble to QUIC; nevertheless, the QUIC handshake obfuscation
makes the service classification task much more important
because the SNI domains are not available in plaintext.

Despite its importance, the QUIC traffic classification is still
nascent, and no previous fine-grained studies of QUIC traffic
classification have been published. Existing works are evalu-
ated on small datasets with not enough traffic classes.1 The
properties of QUIC traffic classifiers and their performance on
real-world datasets were unknown—but not anymore! In this
work, we research fine-grained QUIC service classification.
We selected and compared three different classification ap-
proaches: 1) a multi-modal convolutional neural network (mm-
CNN), 2) a tree ensemble model Light Gradient Boosting Ma-
chine (LightGBM), 3) and an IP-based classifier. We evaluate
them using the CESNET-QUIC22 dataset, which is a large
one-month QUIC network traffic dataset from ISP backbone
lines [10]. The CESNET-QUIC22 dataset, which comprises
over 153 million flows and has 102 service labels, allows
us to create long-term performance evaluations, to reveal the
properties of the three studied classification approaches, and

1The biggest public dataset in this regard is the UC Davis QUIC dataset [9]
with five classes and ∼6500 flows.978-3-903176-58-4 ©2023 IFIP



to compare them. Our results fill the gap in current knowledge
about real-world QUIC traffic classification.

The rest of the paper is organized as follows: Section II sum-
marizes related works. Section III provides a brief overview of
the used dataset. Section IV describes the designs of the three
QUIC classifiers and includes eXplainable AI (XAI) interpre-
tations of their functioning. The main contributions are in Sec-
tion V, in which the classifiers are evaluated and compared
on three consecutive weeks of traffic. Section VI discusses the
measured results, and Section VII concludes this article.

II. RELATED WORK

Encrypted traffic analysis has a long history of different ap-
proaches that utilize non-payload information to infer the type
of transmitted content or even the payload of the messages.
One of the approaches is IP-based classification, which is
widely used in the form of blocklists in network intrusion tasks
(e.g., to detect botnet communications). The IP lists are simple
and efficient but often suffer from false positives due to list ob-
solescence or IP address sharing [11]. Nevertheless, according
to Hoang et al. [12], IP-based web service classification might
work well for popular services since these tend to be hosted on
dedicated IP addresses that remain unchanged for a long time.

Other web service classification approaches use side-
channel information, such as connection metadata (the num-
ber of transmitted bytes and packets, etc.) or sequences of
packet lengths and inter-packet times. We can divide these
approaches into two categories: 1) coarse-grained methods that
aim to classify traffic into high-level categories (such as video
streaming, download, or voice), or 2) fine-grained methods that
aim to distinguish between particular services (e.g., YouTube,
Facebook Messenger, or Netflix).

Fine-grained classification is more challenging because of
the need to deal with more classes. Shbair et al. [4] focused on
TLS service classification among one thousand services. The
authors designed a random forest classifier, evaluated it using
a lab-created dataset, and achieved a service identification
accuracy of 93.1%. In our previous work [6], we had the same
goal but used a real-world dataset from a large ISP network
to evaluate a convolutional neural network (CNN) model that
achieved 97.04% accuracy in the identification of 192 web
services. Other similar works are Yang et al. [5] and Akbari
et al. [13], which also explore encrypted traffic classification
and evaluate their methods using large real-world datasets;
both showing excellent performance even in the fine-grained
service classification. Recent work of Malekghaini et al. [14]
studied TLS service classification in the context of long-term
data drift, with test periods one month or one year apart. Based
on the results, the authors proposed several adaptations to their
neural network architecture. This improved architecture was
then used for the classification of eight QUIC services and
achieved 95.6% accuracy.

The QUIC fine-grained classification research falls behind
TLS. There are, however, several previous works focusing on
coarse-grained classification. Tong et al. [15] proposed one
of the first QUIC traffic classifiers. The authors used CNN,

which was designed on a lab-created dataset with five traffic
categories. This traffic type classifier achieved an accuracy of
∼99% and gave us the first proof that QUIC traffic analysis
based on side-channel information is possible and can be ac-
curate. Rezaei et al. [9] also studied QUIC traffic classification
with CNN and achieved ∼98% accuracy. The authors used
semi-supervised learning to train the classifier, which allowed
training without an extensive dataset. The used lab-created
dataset is public and is called the UC Davis QUIC dataset; it
contains ∼6500 flows divided between five Google services.
Akbari et al. [13] then used the same dataset to validate a
novel CNN architecture and outperformed Rezaei et al. [9]
with ∼99% accuracy.

Despite the promising results in coarse-grained classifica-
tion, the performance and properties of fine-grained QUIC
classifiers are under studied. We are not aware of any large-
scale QUIC studies with a higher number of traffic classes.
The lack of fine-grained approaches can be attributed to the
lack of datasets. In 2023, however, we published the CESNET-
QUIC22 dataset [10], which we will use to perform the first
fine-grained long-term evaluation of multiple classification
methods to fill the gap in the current knowledge about QUIC
traffic classification.

III. DATASET

The CESNET-QUIC22 dataset contains four consecutive
weeks (44th, 45th, 46th, and 47th week in 2022) of QUIC
traffic transmitted in the CESNET2 network. CESNET2 is a
research and educational network in the Czech Republic that
has more than half a million users. The dataset consists of 153
million network flows extended with various features describ-
ing the encrypted QUIC communications. The most important
features for our work are flow-based statistics (e.g., the num-
ber of transferred packets and bytes), packet histograms, and
packet metadata sequences (packet sizes, inter-arrival times,
and directions). Each flow is annotated with a service tag—
a name of the web service that was obtained from the SNI
domain in the decrypted QUIC Initial packet (the first packet
of the handshake). The dataset has 102 different service labels,
which are also organized into groups with the same provider,
such as Google services or Facebook services. These two
providers represent a significant part of the dataset’s services;
Google has 27 services in the dataset, Facebook has 9. The
used mapping between services and service providers is avail-
able at the dataset download page.

More details about the dataset and its collection process
(used software, sampling, flow export timeouts, etc.) are de-
scribed in the original data article [10].

IV. QUIC TRAFFIC CLASSIFIERS

In this section, we introduce the three classification models
that we will evaluate on the CESNET-QUIC22 dataset. For
each model, we describe the input features, data preprocessing,
and provide performance metrics and model interpretations.
The experiments presented in this section use the traffic of the
first week for model training, and the evaluation is done on a



20 million flow subset of the dataset’s remaining three weeks.
To report the classification performance, we measure accuracy,
macro averaged F1-score, and macro averaged recall.2 We also
calculate provider-level accuracy—a modified version of the
accuracy metric, for which the predictions among the same
provider are considered to be correct (for services without a
defined provider, this works like the standard accuracy metric).
The provider labels are used only for measuring this metric,
not for training the models.

As the first model, we choose multi-modal CNN, which
is a popular architecture often used in previous works [6],
[13], [16], [17]. The advantage of this architecture is that it
is designed to process multiple types (also called modalities)
of network data in parallel. Three modalities discussed in the
previous works are packet metadata sequences, flow statistics,
and packet payload data.

As the second model, we choose LightGBM, which is a
popular gradient-boosted decision tree ensemble model. Yang
et al. showed in [5] that standard tree-based models and deep
learning can offer comparable performance in encrypted traf-
fic classification tasks. We also want to find out how these
approaches compare on the QUIC classification task.

As the third model, we designed an IP-based classifier,
which is based on a database of web service observations per
destination IP addresses. The success of this approach depends
on how stable are the IP addresses used for hosting QUIC web
services, i.e., how often those IP addresses change. Related
work of [12] focused on this question to evaluate the benefits
of Encrypted SNI (now renamed to Encrypted Client Hello)
and found out that a surprising number of services are hosted
on stable IP addresses.

A. Deep learning classifier

As the multi-modal CNN (mm-CNN) classifier, we adapt
the network architecture used in our previous work [6], with
modifications described in Section IV-A3.

1) Input: As the multi-modal CNN input, we use packet
metadata sequences (PSTATS) and flow statistics (FLOW-
STATS), and do not touch packet payload at all. In fact, pay-
load information is not even included in the CESNET-QUIC22
dataset.

a) Packet sequences: The most important input is se-
quences of packet sizes, directions, and inter-packet times
(IPT) for the first 30 packets in each flow. The packet sizes
in the dataset are the sizes after transport headers (UDP for
QUIC). Note that acknowledgment packets are included in the
sequences. Some TLS classification approaches filter them out
as zero-payload TCP packets; for QUIC, this is not possible
because their payload size is not zero. Packet directions are
encoded as ±1. Inter-packet times depend on the location of

2We would like to note that because each service was sampled in a different
ratio during the dataset collection (more prevalent services were subsampled
more), the class imbalances in the dataset differ from the true distribution of
the original network. As a result, the accuracy and F1-score metrics would
be different if the models were deployed there. However, the recall metric is
not affected by subsampling and thus translates well into the environment of
the original network.

Sequence of 
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Fig. 1. The multi-modal CNN architecture. The layer parameters rep-
resent: Conv1D(#filters, kernel_size, stride, padding),
Linear (#out_features), Dropout(rate). Some BatchNorm
and ReLu layers are omitted to save space.

TABLE I
CLASSIFICATION RESULTS OF THE THREE MODELS. THE RESULTS ARE IN
THE FORMAT AVERAGE (± STDEV) ACROSS FIVE TRAINING RUNS. THE IP

BASELINE MODEL IS DETERMINISTIC, AND THUS NO AVERAGING WAS
PERFORMED. PROV. ACC. STANDS FOR PROVIDER-LEVEL ACCURACY.

Classifier Acc. Prov. acc. F1 score Recall

Multi-modal CNN 77.41%
(±3.20%)

97.94%
(±0.47%)

82.74%
(±1.05%)

80.60%
(±1.06%)

LightGBM 80.87%
(±0.53%)

98.26%
(±0.02%)

80.65%
(±0.21%)

78.05%
(±0.24%)

IP baseline 68.68% 99.01% 70.02% 70.29%

communicating hosts, their distance, and the network con-
ditions on the path. However, it is still possible to extract
relevant information that correlates with user interactions and,
for example, with the time required for a server to process the
received data.

b) Flow statistics: The second input type is flow statis-
tics, which contain aggregated information about the bidirec-
tional flow. We use all FLOWSTATS fields available in the
dataset: the number of transmitted bytes and packets in both
directions, the duration of flow, and the flow export reason.
FLOWSTATS also include the length of the packet sequence,
its duration, and the number of roundtrips—the number of
changes in the communication direction (computed from the
packet directions sequence).

The last FLOWSTATS features are packet histograms that
contain binned counts of packet sizes and inter-packet times
for each direction across the entire flow. Each histogram has
eight bins, which have a logarithmic scale; please refer to the



CESNET-QUIC22 dataset article [10] for more details. In total,
packet histograms are represented as 32 features.

2) Data preprocessing: We standardize packet sizes and
times using mean and variance (z-score normalization). Direc-
tions of packets are encoded as ±1, and there is no need to
standardize them. We normalize packet histograms so that the
sum of bins of each histogram is equal to one.

For FLOWSTATS features that do not have a fixed range,
such as the number of transmitted packets, we opted for robust
scaling that uses median and inter-quartile range instead of
mean and variance to limit the negative influence of outliers.
We also clip FLOWSTATS features to their 0.99 quantiles
to further reduce extreme values. Packet times are clipped to
a maximum of 15 seconds. Packet sizes are clipped to the
maximum of 1460 bytes, which is the maximum size of an un-
fragmented UDP packet when the typical MTU 1500 is used.

3) Multi-modal CNN architecture: The neural network has
two separate chains for processing PSTATS and FLOWSTATS;
the outputs of those chains are concatenated to create a shared
representation, which is processed with more layers until the
final classification layer and the softmax function. PSTATS
are processed with 1D convolutions, which require a fixed
input length. The packet sequences are padded with zeros to
the maximum length of 30. The FLOWSTATS features are
processed with linear layers. Dropouts are used for regular-
ization, and batch normalization is used to make the network
training faster and more stable. The network uses ReLU as
the activation function.

This architecture is reused from [6]; to adapt it for the QUIC
classification, we did the following modifications: 1) increased
the number of convolution layers and their size (i.e., the num-
ber of output channels), 2) increased the size of linear layers,
and 3) put a pooling layer after the convolutions instead of just
flattening the feature maps (the output of convolutions). We
opted for global pooling, which transforms each feature map to
a single scalar, and as the pooling operation, we choose Gen-
eralized Mean Pooling (GeM) with a learnable parameter p.
To select the exact number of layers, their sizes, dropout rates,
etc., we used the Optuna framework [18], which implements
the state-of-the-art algorithms for hyperparameters search. The
best hyperparameters were selected based on the classification
performance on the validation set. The final model is visual-
ized in Figure 1 and has 2.2 million trainable parameters. A
detailed layer printout of the model’s PyTorch implementation
is provided in Appendix A.

4) Deep learning evaluation: The model was trained on
the first week of the CESNET-QUIC22 dataset, which consists
of 30 million flows. We performed five training runs, where
each run had its own train-validation split (80% train, 20%
validation) of the first week. Each model was tested using a
20 million subset from the remaining three weeks (this subset
was selected once and is the same for all training runs of
all three classification approaches). The results are presented
in Table I, which contains averages across the five runs. We
opted for testing on the 20 million subset to save computa-

(a) mm-CNN

(b) LightGBM

Fig. 2. SHAP-based feature importances of the packet sequence input.

tional resources and because results on unsampled test weeks
are presented in Section V.

The model training and evaluation follow the standard deep-
learning pipeline. We opted for the AdamW optimizer, the
one-cycle learning rate scheduler, and the cross-entropy loss.
We trained the neural network for 30 epochs, which showed
the best performance. For each epoch, we sample a random
subset of one million training flows.3 During the training, the
classification performance is measured on the validation set,
and the best-performing epoch is saved.

5) Deep learning XAI interpretations: It is crucial to un-
derstand the inner workings of a model and identify features
that are the most important for making correct predictions.
In this section, we provide feature importances of the trained
neural network. For that, we used the SHAP method [19] to
compute per-sample attributions, which are then aggregated
(mean of absolute values) to create a global view into the
model’s functioning. We normalize the global attributions so
their sum is one and thus can be interpreted as ”percentages”
of total importance. This normalization also allows a better
comparison of mm-CNN and LightGBM feature importances.

We focus on packet metadata sequences to determine which
packet positions are the most important. The results are shown

3We use sampled training epochs instead of the standard definition of an
epoch as a pass of the entire training set. With smaller epochs, we can better
track the performance during training (compute the validation performance
each epoch, save the best model, etc.) and can tune the amount of training
in smaller steps (as opposed to having to use multiples of the entire large
training set). The training set has 24 million samples after the train-validation
split; thus, our 30 sampled epochs correspond to 1.25 passes of the training
set (though the selection of samples is randomized).



Fig. 3. SHAP-based feature importances of FLOWSTATS features of both LightGBM and mm-CNN classifiers (left); and aggregated feature importances of
packet times, directions, sizes, and FLOWSTATS features (right).

in Figure 2a. Packets sent at the start of the communication are
more informative than later packets, and packet sizes are more
important than inter-packet times and directions. We interpret
the peak at the 5th packet as related to the transmission of the
server certificate. Even though the certificate is encrypted, its
size can still leak information useful for service identification.

B. LightGBM classifier

For the LightGBM classifier, we use the same FLOWSTATS
and PSTATS input features with the same standardization as
for the mm-CNN classifier (see Section IV-A1). As opposed
to convolutions in mm-CNN, which use a sliding window
over the packet sequence, LightGBM considers each packet
position in PSTATS as a separate feature without relation to
the adjacent packets. This difference, however, does not stop
LightGBM from achieving good results.

1) LightGBM evaluation: We use the same training and
evaluation setup as for the mm-CNN classifier (five train-
validation splits of the first week and the same 20 million sub-
set for testing), with the difference that the LighGBM training
requires the whole training set to be loaded and processed at
once. The model was trained up to one hundred iterations with
the early stopping technique—until the validation performance
had not improved for ten iterations.

We used Optuna to find the best configuration of the model
based on the validation performance. We tuned the following
parameters in a step-wise manner: feature_fraction,
num_leaves, bagging_fraction, bagging_freq,
lambda_l1, lambda_l2, and min_child_samples.4

2) LightGBM feature importances: We used the same
SHAP-based approach to compute feature importances of the
LightGBM classifier. The exact algorithm for obtaining SHAP
values differs; for mm-CNN, we used the Captum DeepLift-
Shap implementation;5 for LightGBM, we used its internal
implementation provided in the predict method (with the
pred_contrib argument set).

4These parameters and their order are used in LightGBMTuner, which
is a special Optuna hyperparameter tuner for LightGBM. The description of
individual parameters can be found here https://lightgbm.readthedocs.io/en/
latest/Parameters-Tuning.html.

5https://captum.ai/api/deep lift shap.html.

The resulting feature importances for PSTATS are shown
in Figure 2b. LightGBM focuses less on packet directions, and
the importance of individual packet sizes is more spread out
between the first ten packets (as opposed to the peak at the
5th packet for mm-CNN). Figure 3 shows a comparison of
FLOWSTATS importances and aggregated feature importances
of the two models. The main difference is that LightGBM
relies much more on FLOWSTATS features—the relative im-
portance of FLOWSTATS and packet sizes is almost the same;
on the other hand, for mm-CNN, packet sizes are 6x more
important than FLOWSTATS.

C. IP baseline

The IP-based classifier is described in Algorithm 1 and
has two hyperparameters: /P network prefix for inexact sub-
network matching, and exact_T threshold for cases when
multiple services are hosted on the same IP address.

Algorithm 1 IP-based classification algorithm.
Require: P ← Network prefix
Require: exact_T ← Threshold for exact match

procedure TRAIN([IP1, IP2, IPn],[label1, label2, labeln])
for i ∈ 1...n do

Dict[IPi][labeli] += 1
prefix ← IPi.getNetworkPrefix(P)
PrefixDict[prefix][labeli] += 1

procedure CLASSIFY(IP )
if IP in Dict and Dict[IP ].getMaxFract() ≥ exact_T then

return Dict[IP ].getMaxLabel()
else

prefix ← IP .getNetworkPrefix(P)
if prefix ∈ PrefixDict then

return PrefixDict[prefix].getMaxLabel()
return NoPrediction

During the training, for each IP address and its /P IP prefix,
the algorithm stores hosted services and the number of oc-
currences into dictionaries. For classification, an exact match
trial is performed. When the exact match is not successful,
either due to an unknown (not present in the training set)
IP address or due to multiple co-hosted services at the given
IP (the fraction of the most occurring service is smaller than
exact_T), a subnetwork match is performed, and the service



TABLE II
PER-WEEK ACCURACY (ACC.), PROVIDER ACCURACY (PROV. ACC.), F1, AND RECALL SCORES OF CLASSIFIERS TRAINED WITH DATA FROM WEEK 1. THE

RESULTS ARE IN THE FORMAT AVERAGE (± STDEV) ACROSS FIVE TRAINING RUNS.

LightGBM Multi-modal CNN IP baseline
Acc. Prov. Acc. F1 Recall Acc. Prov. Acc. F1 Recall Acc. Prov. Acc. F1 Recall

Week 2 87.34%
(±0.26%)

98.32%
(±0.02%)

83.17%
(±0.13%)

80.65%
(±0.14%)

86.27%
(±1.53%)

98.32%
(±0.19%)

86.12%
(±0.49%)

84.02%
(±0.50%) 69.17% 99.82% 70.99% 71.81%

Week 3 77.89%
(±0.71%)

98.20%
(±0.04%)

79.29%
(±0.37%)

76.84%
(±0.35%)

72.79%
(±4.08%)

97.68%
(±0.61%)

80.38%
(±1.40%)

78.59%
(±1.33%) 69.16% 98.99% 69.61% 70.05%

Week 4 76.88%
(±0.67%)

98.24%
(±0.02%)

78.86%
(±0.21%)

76.44%
(±0.27%)

72.35%
(±4.15%)

97.76%
(±0.63%)

80.69%
(±1.42%)

78.75%
(±1.38%) 67.82% 98.27% 68.52% 69.11%

LightGBM no handshake Multi-modal CNN no handshake
Acc. Prov. Acc. F1 Recall Acc. Prov. Acc. F1 Recall

Week 2 87.40%
(±0.06%)

97.11%
(±0.05%)

79.37%
(±0.15%)

76.14%
(±0.11%)

87.96%
(±0.12%)

97.50%
(±0.02%)

82.55%
(±0.03%)

79.63%
(±0.07%)

Week 3 83.81%
(±0.05%)

97.27%
(±0.04%)

77.54%
(±0.19%)

74.17%
(±0.10%)

84.81%
(±0.28%)

97.48%
(±0.02%)

80.95%
(±0.10%)

77.78%
(±0.20%)

Week 4 83.09%
(±0.04%)

97.35%
(±0.04%)

77.16%
(±0.26%)

73.84%
(±0.26%)

84.32%
(±0.27%)

97.53%
(±0.03%)

80.41%
(±0.12%)

77.33%
(±0.21%)

with the maximum number of occurrences in the subnetwork
is selected. When even the subnetwork was not present in the
training set, the classifier makes no prediction (which counts
as a wrong prediction during the evaluation).

1) IP baseline evaluation: As in the previous cases, the IP
baseline was trained on the first week and evaluated on the
20 million subset of the remaining three weeks. However, we
used all samples of the first week for single training without
train-validation splitting.6

During the evaluation, we found out that the subnetwork
matching has poor performance and that it is best to set
exact_T to zero—in other words, if an IP was observed
during the training period, predict the service with the highest
number of occurrences at the given IP. The subnetwork match-
ing, with P=/30 for IPv4 and P=/120 for IPv6, is therefore
used only for IP addresses not present in the training set. The
performance of the IP baseline is shown in Table I.

V. DETAILED EVALUATION OVER TIME

The previous sections described each classifier’s design
and measured performance on the 20 million subset of the
three test weeks. Looking at the results in Table I, one could
conclude that LightGBM is the best model; however, before
making such a conclusion, we first should measure classifiers’
performance in each test week and investigate it in more detail.

In this section, we compare the properties of the three
classifiers and their performance over the one month of traffic
provided in the CESNET-QUIC22 dataset. We use the same
models trained on the first week as in Section IV; however,
we report performance metrics for each test week so that it is
possible to observe how the performance evolves over time and
uncover various interesting phenomena influencing classifiers’
performance. The detailed per-week results are shown in the
upper part of Table II (the lower part with no handshake
models is discussed in the following section).

6Using random train-validation splitting does not make sense for the IP
baseline, for which the order of the time axis must be preserved. Without
train-validation splitting, the IP baseline is in itself deterministic, so there is
no reason to perform multiple training runs.

Fig. 4. Per-day accuracy scores of the original versus no handshake ML
models during the entire test period (7th–27th Nov. 2022).

There is a clear pattern across all three weeks of LightGBM
being better than mm-CNN in accuracy but worse in recall.
This means that LightGBM works better on more prevalent
classes, which are often Google and Facebook services, while
mm-CNN is better on other classes in general. All three
classifiers have comparable provider-level accuracy, with the
IP baseline being the best with 99.82% in the second week.
The gaps between provider accuracies and regular, fine-grained
accuracies mean that the classifiers tend to make mistakes
among the same provider; for example, mismatching Google
Play traffic with Google Analytics.

We measured a huge drop in the fine-grained performance
of ML-based classifiers (LightGBM, mm-CNN) between the
second and the third week. For LightGBM, accuracy dropped
from 87.34% to 77.89% (−9.45%); for mm-CNN, the drop
was even bigger, from 86.27% to 72.79% (−13.48%). Recall
drops were lower but still considerable. On the other hand, the
IP baseline remained stable for the entire test period.

The two main observations—the huge drop in the perfor-
mance of ML classifiers between the second and the third week



and the stable performance of the IP baseline over the entire
test period—are further discussed in the following sections.

A. Performance drop of ML-based classifiers

We start by investigating the origin of the performance drop
of the ML-based classifiers. We focus on the case of mm-CNN
since it experienced a larger performance drop than LightGBM
did; however, the following analysis applies to both models.

Looking at per-day recalls of individual services during the
second week, we observed a steep drop in Google services.
Out of 27 Google services, 12 experienced a recall decrease
larger than 20%, and five experienced a decrease larger than
50%. Figure 5 shows the mm-CNN average recall of Google
services compared to the rest, which remained stable.

Given the mm-CNN’s strong reliance on the fifth packet of
the connection (see Figure 2a), we formed a hypothesis that
a change of the Google TLS server certificate caused the
decrease in the performance of ML-based classifiers.

The dataset does not contain information about certificates;
however, since the dataset was created from real-world traffic,
we used Certificate Transparency (CT) logs for the certificate
change investigation. Google renews its *.google.com cer-
tificate quite often—a new certificate is logged in CT logs
at least once a week. On 1st Nov. 2022, Google added two
domains into the X509v3 alternative name field, resulting in
an increase in the certificate size. The time needed for the de-
ployment of this certificate could then explain the performance
drop observed during the second week (7th–13th Nov. 2022).

To further validate the hypothesis, we trained the LightGBM
and mm-CNN classifiers with removed handshake packets—
we zeroed out the first eight packets from the packet se-
quences.7 The performance of no handshake classifiers is
shown in the lower part of Table II, and a per-day compar-
ison with the original models is depicted in Figure 4. With-
out handshake packets, both classifiers showed more stable
performance across all test weeks, supporting our hypothesis
about the certificate influence. The accuracy drop of the no
handshake mm-CNN between the second and third week is
−3.15%, while the drop of the original mm-CNN is −13.48%.
For LightGBM, the drop changed from −9.45% to −3.59%.
The training process also stabilized, and the standard deviation
of performance metrics is much smaller when the handshake
information is not used. For both ML-based classifiers, how-
ever, the removal of the handshake information resulted in a
significant decrease in recall scores.

Of all tested classifiers, mm-CNN trained without the hand-
shake packets has the best accuracy scores in all three test
weeks; this is due to better performance on data-drifted Google
services, which represent around 56% of the dataset flows.
Original mm-CNN with handshake packets offers the best
recall scores in all three test weeks, and the IP baseline offers
the best provider-level accuracy scores in all three test weeks.
Thus, there is an apparent trade-off when choosing the classi-
fier depending on the preferred metric.

7We used the same training pipeline and hyperparameters as described in
Sections IV-A and IV-B; flow statistics input features remained unchanged.

Fig. 5. Multi-modal CNN performance in the second week (7th–13th
Nov. 2022). The average recall of Google services dropped from ∼92% to
∼67% while the recall of other services remained stable.

B. Stability of IP addresses

The IP-based classifier proved to have more stable (but
worse than ML-based) performance in the studied period. Even
though the IP baseline fails at recognizing 24 services, which
have recall lower than 10% in all weeks, 58 services have
recall higher than 99% and a recall drop lower than −1%. Out
of the remaining services, 12 services have a recall drop lower
than −5%. During the test period, we noticed three services
that changed all their IP addresses, resulting in a recall drop
to 0%. Overall, the IP baseline either works well and is stable;
or does not work at all for co-hosted services (of course, there
are few services with behavior somewhat between, but these
are the two main patterns).

TABLE III
PER-WEEK RECALLS OF SELECTED SERVICES FOR IP BASELINE (IP),

LIGHTGBM (LGBM), AND MULTI-MODAL CNN (MM-CNN).

Week 2 Week 3 Week 4 Diff

IP 99.99% 23.87% 0.00% -99.99%
LGBM 80.33% 79.16% 74.49% -5.83%alza-www

mm-CNN 85.75% 85.57% 86.54% 0.79%

IP 100.00% 31.70% 0.00% -100.00%
LGBM 62.30% 51.94% 61.72% -0.58%mentimeter

mm-CNN 69.58% 60.40% 71.34% 1.76%

IP 32.14% 0.91% 1.66% -30.49%
LGBM 81.26% 70.88% 53.66% -27.60%kiwi-com

mm-CNN 87.38% 83.65% 76.46% -10.92%

IP 100.00% 100.00% 100.00% 0.00%
LGBM 52.73% 65.93% 57.65% 4.92%rohlik

mm-CNN 50.57% 65.46% 56.01% 5.44%

IP 99.98% 100.00% 99.99% 0.01%
LGBM 88.45% 86.48% 69.32% -19.13%doi-org

mm-CNN 91.28% 89.71% 68.02% -23.26%

We selected a couple of services to demonstrate the differ-
ences between the studied classifiers; their per-week recalls
are shown in Table III. We can notice that alza-www (an
e-commerce service) and mentimeter (a web-presentation



software) show an IP baseline recall drop from 100% to 0%,
but remain stable for ML-based classifiers. Another service
with a big recall drop is kiwi-com (flights broker); never-
theless, the IP baseline struggled with this service from the
beginning, and ML-based classifiers also are not stable in this
case. All these three services are hosted in the Cloudflare CDN
infrastructure, in which IP addresses might change relatively
often. This is not a surprising observation or explanation; how-
ever, it is still interesting to capture this phenomenon in a real-
world dataset in 3 out of 102 services (or out of 78 that were
recognized at the beginning) during a month-long test period.

There are also services for which the IP baseline works
better than ML-based models. For example, the doi-org
service, for which IP baseline has 100% recall all three weeks
while ML-based models get worse from ∼100% to ∼70%. An-
other example is rohlik (online food shopping), for which
IP baseline has stable 100% performance while ML models
have ∼55%.

VI. DISCUSSION

The fine-grained QUIC service classification proved to be a
challenging but doable task. To summarize the results: multi-
modal CNN achieved the best average recall of 84.02%, multi-
modal CNN trained without the handshake packets achieved
the best accuracy of 87.96%, and the IP baseline offered the
best provider-level accuracy surpassing 98% in all test weeks.
During our experiments, we collected a lot of insights, and the
most important ones are summarized in Table IV.

Direct comparison with other works, which use different
datasets, is problematic. For QUIC, no related works are sim-
ilar enough considering the dataset size, service count, and
service composition. For TLS, our previous work [6] evaluated
a similar neural network architecture on a dataset from the
same source network and achieved a classification accuracy
of 97.41%, which is about 10% better than the best result
for QUIC. However, the exact classes differ (e.g., the QUIC
dataset has a larger fraction of Google service). Nevertheless,
this is still the most similar related work, and we believe this
comparison is valid.

We performed a one-month evaluation, which we consider
to be the best practice because it can show the time-related
properties of the studied models. In our case, the long test
period uncovered a sharp reduction in the performance of ML-
based models. We attribute this reduction to network traffic
data drift. We provided several indications supporting that the
data drift was related to the certificate change of a major ser-
vice provider—Google. According to the CT logs, the size of
the *.google.com certificate changed eight times between
1.11.2022 and 28.2.2023. Therefore, we assume that CESNET-
QUIC22 does not capture a rare event but rather a general
pattern that can happen more than twice a month.

To our knowledge, such fast data drift has not been observed
in previous studies targeting network traffic classification.
Compared to the related work of Malekghaini et al. [14], who
measured data drift on datasets years or months apart, we show
that substantial data drift can develop within a single week.

TABLE IV
KEY OBSERVATIONS AND FINDINGS.

Observation Reference

mm-CNN has the highest recall, while it is also the
most susceptible to data drift in the form of certifi-
cate change.

Table II
Figure 4

Models trained without the handshake packets are
more stable and robust in the presence of data drift.

Table II
Figure 4

IP baseline either works well (for over ∼50% of
dataset services) or does not work at all (∼25%). Section V-B

IP-based classification broke down (0% recall) for
three services during the one-month test period (out
of 78 that were recognized at the beginning).

Table III

LighGBM uses FLOWSTATS features much more
than mm-CNN. Figure 3

XAI-based interpretations show that mm-CNN fo-
cuses a lot on the fifth packet of the sequence, which
in most cases should be related to the transmission
of the server certificate.

Figure 2a

We observed a huge 30% drop in recall of Google
services during the second week. This demonstrates
how massive and sudden the data drift in network
traffic can be.

Figure 5

Network traffic classifiers should be evaluated on
multiple consecutive time periods; otherwise, inter-
esting and important phenomena might not be dis-
covered.

Table I
Table II

To mitigate the observed performance drop, we can exclude
the first eight packets from the packet sequence input and di-
rect the model’s attention to different characteristics. However,
models trained without the handshake packets achieved lower
recall scores. The fact that multi-modal CNN is more sus-
ceptible to data drift compared to LighGBM might be related
to different processing of packet metadata sequences. Multi-
modal CNN uses 1D convolution, while LightGBM processes
each packet position as a separate feature. Convolutions can
extract information from consecutive packets and, for exam-
ple, sum consecutive packet sizes to obtain the size of the
encrypted server certificate. Convolutions are also invariant to
exact packet positions; thus, CNN can find server certificates
starting at different positions in the sequence. For LightGBM,
extracting the same information is much more difficult when
packet positions and packet features are processed without
relation to each other. This makes mm-CNN less robust to
certificate changes, which leads to an interesting research ques-
tion for future work—to investigate the differences in packet
sequence processing in more detail, find a method to combine
the two approaches, and get the best from both.

Limitations of the presented approach: We would like to
state several limitations of this work. First, we focused on
the standard closed-world classification and evaluated trained
classifiers on known classes. As several related works pointed
out, it is important for practical deployment to handle out-of-
distribution detection to recognize unknown classes that were
not present in the training set. Second, even though the dataset



spans one month, which is the longest time span for a public
QUIC dataset, a longer dataset would still be needed for better
evaluation of classifiers’ properties over time; for example, a
longer time span would allow us to estimate the frequencies
of events such as the observed massive data drift of Google
services; or the IP baseline breaking down for some services.
Third, of course, more classes would make the problem harder
and more realistic; still, the used dataset has the most class
labels out of the public QUIC datasets.

VII. CONCLUSION

The goal of this work was to explore the classification of
encrypted QUIC traffic in a comprehensive fashion, evaluat-
ing multiple classification models on multiple consecutive test
periods. This allowed us to uncover properties of individual
classifiers and changes in their behavior over time. We based
our evaluation on CESNET-QUIC22, which is the largest, with
the most class labels, and the longest-spanning public dataset
of QUIC flow traffic.

Apart from per-week per-classifier results presented in Ta-
ble II, we collected a number of observations, out of which the
most important are discussed in Section VI and summarized
in Table IV. In encrypted traffic analysis, it is standard to
use the first N packets of communication; we are the first to
report that omitting the handshake packets transmitted at the
beginning of the communication might bring some benefits in
the form of improved robustness against data drift.

As the first paper targeting QUIC traffic classification on a
larger scale, we set a new baseline for this task. Moreover, our
results create a foundation for future research, e.g., in novel
multi-modal CNN architectures that would be more resistant to
data drift of network traffic; or in designing an ensemble model
that would combine the benefits of IP-based classification
with the benefits of ML models processing packet metadata
sequences.
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APPENDIX A
PYTORCH IMPLEMENTATION DETAILS OF MULTI-MODAL CNN

MM_CNN_30(
(cnn): Sequential(
(0): Conv1d(3, 200, kernel_size=(7,), stride=(1,), padding=(3,))
(1): ReLU()
(2): BatchNorm1d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): Sequential(

(0): Conv1d(200, 200, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): BatchNorm1d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(4): Sequential(

(0): Conv1d(200, 200, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): BatchNorm1d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(5): Sequential(

(0): Conv1d(200, 200, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): BatchNorm1d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(6): Conv1d(200, 300, kernel_size=(5,), stride=(1,))
(7): ReLU()
(8): BatchNorm1d(300, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): Conv1d(300, 300, kernel_size=(5,), stride=(1,))
(10): ReLU()
(11): BatchNorm1d(300, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(12): Conv1d(300, 300, kernel_size=(4,), stride=(2,))
(13): ReLU()

)
(cnn_global_pooling): Sequential(
(0): GeM(kernel_size=10, p=3.0000, eps=1e-06)
(1): Flatten(start_dim=1, end_dim=-1)
(2): BatchNorm1d(300, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): Dropout(p=0.1, inplace=False)

)
(fc_flowstats): Sequential(
(0): Linear(in_features=44, out_features=225, bias=True)
(1): ReLU()
(2): BatchNorm1d(225, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): Sequential(

(0): Linear(in_features=225, out_features=225, bias=True)
(1): ReLU()
(2): BatchNorm1d(225, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(4): Sequential(

(0): Linear(in_features=225, out_features=225, bias=True)
(1): ReLU()
(2): BatchNorm1d(225, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(5): Linear(in_features=225, out_features=225, bias=True)
(6): ReLU()
(7): BatchNorm1d(225, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Dropout(p=0.1, inplace=False)

)
(fc_shared): Sequential(
(0): Linear(in_features=525, out_features=600, bias=True)
(1): ReLU()
(2): BatchNorm1d(600, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): Dropout(p=0.2, inplace=False)

)
(out): Linear(in_features=600, out_features=102, bias=True)

)

def forward(self, t):
pstats, flowstats = t
out_cnn = self.cnn(pstats)
out_cnn = self.cnn_global_pooling(out_cnn)
out_flowstats = self.fc_flowstats(flowstats)
out = torch.column_stack([out_cnn, out_flowstats])
out = self.fc_shared(out)
logits = self.out(out)
return logits

Generalized Mean Pooling (GeM) implementation adapted from https://www.kaggle.com/code/scaomath/
g2net-1d-cnn-gem-pool-pytorch-train-inference.


