
Active TLS Stack Fingerprinting:
Characterizing TLS Server Deployments at Scale

Markus Sosnowski∗, Johannes Zirngibl∗, Patrick Sattler∗, Georg Carle∗,
Claas Grohnfeldt†, Michele Russo†, and Daniele Sgandurra†

∗Chair of Network Architectures and Services, Technical University of Munich, Germany
{sosnowski, zirngibl, sattler, carle}@net.in.tum.de

†AI4Sec, Huawei Technologies Munich, Germany
{claas.grohnfeldt, michele.russo1, daniele.sgandurra}@huawei.com

Abstract—Active measurements can be used to collect server
characteristics on a large scale. This kind of metadata can
help discovering hidden relations and commonalities among
server deployments offering new possibilities to cluster and
classify them. As an example, identifying a previously-unknown
cybercriminal infrastructures can be a valuable source for cyber-
threat intelligence. We propose herein an active measurement-
based methodology for acquiring Transport Layer Security (TLS)
metadata from servers and leverage it for their fingerprinting.
Our fingerprints capture the characteristic behavior of the TLS
stack primarily caused by the implementation, configuration, and
hardware support of the underlying server. Using an empirical
optimization strategy that maximizes information gain from every
handshake to minimize measurement costs, we generated 10
general-purpose Client Hellos used as scanning probes to create a
large database of TLS configurations used for classifying servers.
We fingerprinted 28 million servers from the Alexa and Majestic
toplists and two Command and Control (C2) blocklists over a
period of 30 weeks with weekly snapshots as foundation for two
long-term case studies: classification of Content Delivery Network
and C2 servers. The proposed methodology shows a precision of
more than 99 % and enables a stable identification of new servers
over time. This study describes a new opportunity for active
measurements to provide valuable insights into the Internet that
can be used in security-relevant use cases.

Index Terms—Active Scanning, TLS, Fingerprinting, Server
Classification, Command and Control Servers

I. INTRODUCTION

The Internet is characterized by a high level of complexity
and heterogeneity. The arising metadata can enable novel and
promising data mining use cases. One way to handle the com-
plex data is to represent servers in a simple form, that is, by
devising server fingerprints that succinctly represent their main
characteristics, such as their implementation or configuration
options. The Transport Layer Security (TLS) is currently the
de facto standard for encrypted communication on the Internet
[1] and has grown to a complex ecosystem due to continuous
development and required backward compatibility [2]. Due
to this, the protocol inherently provides a variety of meta-
information related to client and server capabilities that are
exchanged during the initial TLS handshake and that can be
used to characterize a server. In previous work, these meta-
data have been exploited by multiple passive approaches [3–
5]; whereas, in this work we advocate the usage of active

measurements that allow engaging with any responsive server
on a large scale, considering encrypted data, and building a
comprehensive data set from a single vantage point.

Fingerprinting TLS servers can help to understand, model,
and secure the Internet. If TLS fingerprints are able to indicate
a level of trust of an infrastructure, they can be valuable
cyber-threat intelligence, especially because the TLS is in-
creasingly utilized by cybercriminals [6]. Possible use-cases
are: (i) Intrusion Detection Systems fingerprint servers seen
in network flows on-demand and compare results with known
malicious fingerprints; (ii) security researchers use fingerprints
from Internet-wide measurements to find unknown threats; or
(iii) regularly monitoring own servers where deviations from
a fingerprints baseline can indicate an unintended software
change or a malware infection. A need for this kind of
information can be derived from the fact that Internet scanning
companies like censys.io have started to incorporate JARM [7]
into their portfolio (according to their host data definition [8]).
JARM is an open-source TLS server fingerprinting tool that
uses similar data to this work and has just recently emerged.

However, no long-term systematic study has yet been
conducted to show the applicability and the performance of
detection use cases with actively collected TLS fingerprints
nor has the effectiveness of their collection been analyzed.

In this work, we will investigate (i) how to construct a
similarity relation among TLS server deployments, (ii) how
effective scanning configurations can be found while mini-
mizing the measurement costs, and (iii) how applications built
with these fingerprints perform on a large scale.

We propose Active TLS Stack Fingerprinting as an effective
method for Internet measurements and provide the following
contributions:

(i) reasoned selection of TLS handshake features for fin-
gerprinting the TLS stack and their encoding in an
extendable and shareable format;

(ii) methodology for finding or tailoring effective TLS Client
Hellos (CHs) for fingerprinting use cases and 10 general-
purpose CHs that maximize complementary information
extraction from servers;

(iii) long running measurement study covering seven months
to validate the methodology, show improvements to the
related work JARM, and demonstrate the potential of978-3-903176-47-8 ©2022 IFIP



TLS fingerprinting based on two case studies to detect
Content Delivery Network (CDN) and Command and
Control (C2) servers; and

(iv) published data and open-source scanner to enable repro-
ducible results and to support the community.1

II. RELATED WORK

The large amount of metadata from TLS handshakes has
been used in multiple passive traffic classification and finger-
printing related works [3–5]. In the context of the Transmis-
sion Control Protocol (TCP), fingerprinting with active scans
has been successfully used by Refs. [9, 10] and [11] to detect
the Operating System (OS) on a remote server. Similar to our
CH selection, Greenwald et al. [9] used the Entropy from the
information theory as metric to minimize the number of probes
needed for classification.

To the best of our knowledge, the only related work we can
directly compare ourselves to is the JARM tool developed by
Althouse et al. [7]. It is a popular open-source tool for TLS
server fingerprinting. Compared to this work, our tool differs
in the selection of CHs and the extracted features from the TLS
handshake. They use 10 custom-defined CHs for fingerprinting
that “have been specially crafted to pull out unique responses
in TLS servers” [7]. In contrast to this work, they do not
complete the TLS handshake, only use unencrypted data, and
do not consider TLS alert nor extension data besides the
Application Layer Protocol Negotiation (ALPN) protocol. We
will show in section V-E that JARM can be used for C2 server
detection; however, the effectiveness can be improved with the
data suggested by this paper.

Tools like testssl.sh [12] can collect fingerprintable
information about TLS servers, but need a very large num-
ber of requests to collect this information. We observed
testssl.sh to make 100−200 requests to the same server.
This makes it time expensive and ethically questionable to
conduct Internet wide scans. Additionally, their focus on the
configurable part of the TLS on servers (e.g., supported cipher
suites) results in neglecting fingerprintable implementation
specific features like the extension order.

Chung et al. [13] investigated the usage of the Online
Certificate Status Protocol (OCSP) stapling from different
webservers and observed Nginx servers, which did not return
OCSP responses to the first client connecting, appending
the information only to consecutive requests. These imple-
mentations did not pre-fetch the information nor wait until
the Certificate Authority (CA) returned the necessary OCSP
response they could forward to the client. This means, from
the clients point of view, that the presence of the OCSP
stapling response is non-deterministic. This aligns with our
observations of the non-deterministic presence of the Status
Request extension because this TLS extension is currently
only used to announce an OCSP stapling [14] response in
the handshake. Gigis et al. [15] investigated Hypergiants,
including CDNs over a period of seven years. They showed the

1https://active-tls-fingerprinting.github.io

increasing role of servers deployed in Autonomous Systems
(ASs) not managed by the CDN to influence and localize
CDN traffic to the user. Their results align with ours because
we were also able to find server deployments outside the
networks managed by the CDN and they found indicators of
reverse proxies that influence the measurement results. Their
results rely on servers correctly offering identification material
in the certificates, while this work is more subtle and can
identify deployments where this information is deliberately
hidden (e.g., to detect C2 servers).

III. METHODOLOGY

The TLS protocol family “is the backbone of secure com-
munication over the Internet” (as introduced in more detail
by Holz et al. [16]) and currently the de facto standard for
encrypted communication [1]. This work exploits the TLS to
discover similarity relations among servers by fingerprinting
their Server Behavior. A Server Behavior is defined as the
totality of the capabilities, the interpretation (deviations from
the standard or implementation of undefined parts, such as
the order of extensions) and the configuration of the TLS on a
server, which can influence the outcome of the TLS handshake.
Our work is based on the assumption that every TLS server has
a specific Server Behavior that depends on the implementation,
capabilities, and configuration of the TLS library, hardware,
and application utilizing the TLS. Identifying these behaviors
allows to characterize server deployments either directly or
in conjunction with additional data (e.g., obtained on the
Hypertext Transfer Protocol (HTTP) level).

TLS handshakes are initiated by clients, and servers only
need to react to the initial handshake request (e.g., a server
chooses one cipher from a list that was previously proposed
by the client). Therefore, the Server Behavior we want to
fingerprint is not directly revealed by the server; only the
reaction to different requests (i.e., CHs) can be observed.
Using multiple CH increases the acquirable knowledge and
coverage of the Server Behavior. For each CH, we collect the
TLS version, cipher, and TLS extension data from different
types of TLS messages to construct the fingerprint. We only
initiate handshakes with TLS versions 1.0 to 1.3 but also store
a fingerprint if the server answers with an older version.

This work proposes a methodology for capturing a part of
this Server Behavior by sending a fixed number of specifically
crafted CHs to a server, extract features as string encoded
information for each CH, as detailed in section III-A, and com-
bine these features to a fingerprint according to section III-B.

A. Features Extracted from TLS Handshakes

Given a CH, we extract features from a single handshake
in a textually encoded format to be used for fingerprinting.

Features are the selected version, cipher suite, received
alerts and extensions data. Extensions are extracted as an
ordered list of key-value pairs each from the Server Hello, En-
crypted Extensions, Certificate Request, Hello Retry Request
and Certificate TLS messages. The value is only included for

https://active-tls-fingerprinting.github.io


TABLE I
TLS EXTENSIONS WHERE THE DATA CONTAINED IN THE EXTENSIONS ARE

USED FOR ACTIVE TLS STACK FINGERPRINTING.

ID Name ID Name

1 Max Fragment Length 19 Client Certificate Type
7 Client Authentication 20 Server Certificate Type
8 Server Authentication 24 Token Binding
9 Cert Type 27 Compress Certificate

10 Supported Groups 28 Record Size Limit
11 EC Point Formats 43 Supported Versions
13 Signature Algorithms 47 Certificate Authorities
15 Heartbeat 50 Signature Algorithms Cert
16 ALPN 51 Key Share (only selected group)

several hand-picked extensions (Table I) or else left empty. An
example of a textually represented fingerprint is

771

Version

Cipher
1301 43.AwQ-51.23

Server Hello Extensions

Encrypted Extensions
0.-10.AAo... ___ 18.

Certificate Extensions

Alerts
<40 .

In the subsequent paragraphs, we will discuss the reasons
for the inclusion of each feature. The version, selected cipher
suite, and used extensions directly depend on the capabilities
and the configuration of the TLS library used by the server
and are, therefore, part of the fingerprint. The content of
each individual extension is more diverse, and its finger-
printing value depends on the actual extension. Information
depending on the current TLS session, specific server, or TLS
certificate are excluded. From an analysis of different TLS
extensions [14, 17] and from the observations in our scans,
we infer the content of the extensions listed in Table A.I
as a feature. An exception to this schema is the Key Share
extension, where we remove the session specific part and
only keep the selected group used for the Diffie–Hellman key
exchange. The fingerprints are defined in a format that can
easily be adapted (e.g., to include values specified in future
extensions). Error handling is implementation specific; hence,
the TLS alerts sent by the server are also included. We do not
create a fingerprint if the error was caused by the TCP layer.
The current approach cannot differentiate whether the error
is part of the Server Behavior or if it was a nondeterministic
failure of the TCP stack. We consider the order of extensions
as an important and implementation-specific information that
we include in our fingerprints. The presence of the Status
Request extension was nondeterministic in our measurements
(section V-B); therefore, we removed this extension from the
fingerprints trading the information about the OCSP stapling
support of a server for results consistency.

B. Fingerprinting with Multiple Requests

In this work, data from multiple server responses are com-
bined to construct the TLS fingerprint of the Server Behavior
because a single response was not precise enough to provide
good results in our experiments.

While a single CH reveals only a potentially small request-
dependent subset of the information about the target server,

multiple request–response pairs allow the collection of com-
plementary information and, thus, a more complete picture
about the Server Behavior. Increasing the number of CHs is a
trade–off between learned information and measurement costs.
However, the benefit of sending multiple CHs decreases with
every additional CHs one sends because of the limit to which
extent a Server Behavior can influence the TLS handshake.
Moreover, the number of CHs should be limited based on time,
resources, and ethical factors. Hence, the input set CH of CHs
is an optimizable parameter influencing the effectiveness of
fingerprinting. Let f(s, c) return the features from a server s
given a specific CH c in the format described in Section III-A,
then the server fingerprint is defined as

fp(s) =
⋃

c∈CH

(c, fp(s, c)).

The features obtained with a single CH are only comparable
in the context of the same CH; hence, the CH used to generate
each part of the fingerprint must be stored along the combined
fingerprints. We never compared information obtained with
different CHs because we do not know what combination of
parameters in the CH has caused the particular response.

In conclusion, the number of requests and the design of
different CHs are crucial parameters that can be optimized
to maximize the amount of collectible information while
minimizing measurement costs and respecting ethical aspects.
This will be experimentally done in section IV.

C. Active Measurements under Ethical Considerations

We have used an active measurement pipeline based on
established tools and by following basic ethical principles.

The pipeline takes a list of IP addresses, domains, and CHs
as input. The domains are resolved according to the IPv4 and
IPv6 addresses with MassDNS2 and a local Unbound3 server,
resulting in a set of IP address and domain tuples we call
targets. We fingerprint with multiple CHs; thus, the final input
is a randomly ordered cross-product of the targets and the CHs.
This list is fed to the TLS scanner based on an implementation
of Amann et al. [18], a scanner designed for Internet wide
usage. If a domain name is available for an IP address, we
used it as the Server Name Indication (SNI). We designed a
custom TLS library based on the Golang standard library that
allows the definition of arbitrary CHs as input for each TLS
connection and to extract required TLS handshake meta-data.
Both scanner and library are open-sourced [19].

We reduce the impact on third parties by following the best
practices, as described by Durumeric et al. [20]. Our work
does not harm individuals or reveal private data as covered by
Refs. [21] and [22] and focuses on publicly reachable services.
We use rate limiting, maintain a blocklist, use dedicated scan
servers with abuse contacts, informative rDNS entries, and
websites that inform about our research, and provide contact
information for further details or scan exclusion. Additionally,
because we scan the same target with multiple requests, we

2https://github.com/blechschmidt/massdns
3https://www.nlnetlabs.nl/projects/unbound

https://github.com/blechschmidt/massdns
https://www.nlnetlabs.nl/projects/unbound


0 10 20 30 40 50
Number of Client Hellos (CHs)

0

10000

20000

30000

40000

50000

Di
st

in
ct

 S
er

ve
r B

eh
av

io
rs Selected CHs

0%

50%

100%

150%

200%

Maximum of differentiable behaviors (left)
Relative increase of the number of distinct
Server Behaviors from N to N+1 CHs (right)

Fig. 1. Experimentally determining the trade-off to increase the number of
CHs versus the ability to distinguish Server Behaviors (measured in distinct
fingerprints). We selected a set of 10 CHs for our following analyses.

limit the interference by spreading the requests over a large
time frame (i.e., two days in the longitudinal study).

IV. SYSTEMATIC DESIGN OF CLIENT HELLOS

The internal mechanism of TLS servers is a black-box for
active scanners. Without knowledge about the implementation
of every TLS server, it is impossible to find the best method
for fingerprinting. However, more effective fingerprints can
be developed by optimizing their distinctiveness. We propose
herein an empiric design of CHs by analyzing a large pool
of randomly generated candidates to find an optimal subset
maximizing a given metric. We choose the total number
of distinguishable servers as metric to find general-purpose
CHs usable for a wide range of use-cases. If the use-case
is known (e.g., detecting CDN or C2 servers), a different
strategy could be to minimize the necessary probes needed
for a classification. We will later revisit this use-case driven
design regarding C2 servers in section VI. We have open-
sourced the general-purpose CHs and their generation code as
part of our scanner [23].

The experiment is designed as follows: (i) randomly gen-
erate 5 000 CHs each from the feature space the used TLS
scanner supports and the complete feature space as defined by
IANA [24]; (ii) distribute a measurement with these CHs over
the Alexa [25] and Majestic [26] toplists with a maximum
of 13 CHs per server to gain a first impression of good-
performing CHs; and (iii) select the best-performing CHs from
the previous measurement and conduct a second measurement
of the same targets and fingerprint each target with 50 CHs.
We choose the prime-number 13 together with a round-robin
algorithm to increase the variation of the different sets of CHs
sent to a single server. The decision to scan with 50 CHs per
server was a pure trade-off between development speed and
data quality (the scan took more than 4 days).

Figure 1 shows the number of behaviors that can be distin-
guished with subsets of the 50 CHs. The sets were constructed
by iteratively selecting CHs that increase the number of distin-
guishable Server Behaviors most. To remove the potential bias
from nondeterministic TCP errors, we consider only servers
for which every CH produced a fingerprint. We can see that

every added CH enables to differentiate additional Server Be-
haviors; however, the relative increase of behaviors decreases
the more CHs we use. We could not reach the theoretical upper
limit of distinguishable behaviors. Based on this analysis, we
selected 10 general-purpose CHs with a good performance in
distinguishing Server Behaviors. We thought that this number
was adequate for our use cases because according to Fig. 1
the relative increase of information was quite low when using
more than 10 CHs, we can directly compare related work, and
this number seemed to be acceptable for Internet scanners like
censys.io already fingerprinting with JARM [8]. However,
in section VI, we will illustrate that the number can be lower
for specific use cases (e.g., detecting C2 servers). We only
manually adapted some cryptographic parameters of these CHs
that were too CPU-expensive, such as the 512-bit version
(secp521r1 [27]) of the elliptic curve domain parameters
for the precomputed TLS 1.3 Key Share. This curve would
have more than doubled our scanning time.

Through the experiment described in this section, we gained
a set of 10 general-purpose CHs that we will use in the
following section to fingerprint servers on the Internet. They
are a good trade-off between limiting the number of requests
and the resulting impact on the scanned infrastructure and
providing a high distinctiveness of the Server Behaviors.

V. LONGITUDINAL STUDY OF TOPLISTS AND BLOCKLISTS

To investigate the applicability of TLS fingerprinting on the
Internet, we performed measurements of two toplists and two
C2 blocklists over 7 months. The following sections analyze
the stability of the fingerprints, apply the methodology to
detect CDN and C2 servers, and compare to related work.
The two case studies were selected to have one with a big
sample size and where the ground truth can be verified and
one where the value of the study is high, but the sample size
is low.

A. Data

We scanned servers from the two toplists and two blocklists
over a period of 30 weeks using 25 weekly snapshots starting
on July 19, 2021. Five scans failed and the data for these
weeks were skipped.

Table II presents the number of scanned servers. A target
is the scanned combination of IP addresses, TCP port, and
domain name. The targets were aggregated over a period of
seven days from Alexa [25] and Majestic [26] to cover the
weekend effect and the weekly patterns observed by Scheitle et
al. [28]. The last 30 days were used for the SSLBL [29], while
the current list was utilized for the Feodo Tracker [30]. We
took a larger time frame for the SSLBL, because in addition
to the IP addresses, we used the provided certificate hashes to
reduce false positives. This list of around 4M weekly targets
was taken as input to the scanning pipeline, as described
in section III-C. The scanning probes are both the 10 CHs
designed in section IV and the 10 CHs modeled after JARM [7]
to compare both approaches. However, unless stated otherwise,
the following analyses are only based on the 10 CHs designed



TABLE II
TOTAL NUMBER OF COLLECTED DATA SAMPLES OVER 30 WEEKS FOR THE

LONGITUDINAL ANALYSES. ALSO SHOWS THE NUMBER OF DISTINCT
TARGETS AND DOMAIN NAMES THE DATA COVERS (M = 106).

Source Scanned Successful

Total Targets Domains Total Targets Domains

Alexa 80.88M 26.48M 11.69M 68.48M 22.21M 9.87M
Majestic 37.26M 4.72M 1.58M 31.23M 3.59M 1.36M
SSLBL 951 250 558 127
Feodo 8.14k 1.06k 7.07k 883

Total 103.77M 27.69M 12.01M 87.87M 23.12M 10.16M

2021-08
2021-09

2021-10
2021-11

2021-12
2022-01

2022-02

Measurement Dates

80%

90%

100%

St
ab

le
 F

in
ge

rp
rin

ts

Without Status Request
Including Status Request

Fig. 2. Percentage of targets with the same TLS fingerprint on the n − 1
and nth measurement in relation to the total targets fingerprinted on both
weeks. The Status Request extensions are responsible for the most unstable
fingerprints with drops under 90% mostly caused by Cloudflare.

for this study. Targets are only considered to be successfully
fingerprinted if a fingerprint for each CH was collected. The
total number of targets was less than the sum of each list due
to an overlap between the lists.

B. Consistency of TLS Fingerprints

The fingerprints only provide value for identification pur-
poses if they can be unambiguously assigned to a server, and
this assignment does not change, in other words, is stable.

For each measurement, a large number of servers was al-
ready seen in the last measurement (≈ 48% each week); hence,
their fingerprints can be compared over time. Figure 2 shows
the relative number of targets remaining stable during each
measurement. On average the targets remained stable 99% of
the time. The stability drops on average to 90% if the Status
Request extension is considered for fingerprinting. In these
cases, the presence of the extension is nondeterministic. This
is especially visible during stability drops under 90%, where
only ≈ 3

4 of the TLS handshakes to Cloudflare contained a
Status Request extension compared to the other weeks.

This analysis concludes that Status Request extensions
should not be considered for obtaining useful fingerprints.
However, they are, without the extension, a very stable and
consistent feature to identify servers. The subsequent sections
analyze how differences in fingerprints can be used to identify
whole deployments of similar servers.

C. Case study: Detecting CDN server deployments

A core assumption about TLS fingerprinting is that it
reveals groups of similar server deployments. We tested this
assumption, by analyzing the fingerprints of four major CDNs.

TABLE III
SERVERS SEEN WITH A TLS FINGERPRINT FROM THE RESPECTIVE CDN.

A STRONG CORRELATION BETWEEN BOTH CAN BE SEEN.

Akamai Alibaba Cloudflare Fastly

Targets with a TLS fingerprint attributable to a CDN

Total 98 701 405 7 021 087 572 294
IP addresses 24 332 267 222 050 7 238

Targets observed from ASs owned by the CDN

Total 97 022 403 6 991 829 559 860
IP addresses 23 564 265 214 436 1 752

Targets observed from different ASs, but have access to CDN content

Total 664 2 493
IP addresses 212 139
ASs 20 27

On the one hand, these are TLS-enabled servers deployed by
a single actor on a large scale. On the other hand, ground truth
can be used because it is possible to verify if a server is a part
of the CDN. With this analysis, we found servers outside of
the ASs operated by the CDN that served the CDN content.

The analyzed CDNs have in common that they use their
own ASs to deploy servers and CDN caches. Hence, we
can identify them through the AS, determined through the
Border Gateway Protocol (BGP) dumps downloaded from
Routeviews4 and Pyasn5. The content served by a CDN is
independent of the actual server or the IP address. Therefore,
we call servers serving this content a CDN cache. The CDN
decides on the criteria like the SNI which content should be
returned. In the same manner, the proper TLS certificate for
the requested domain is selected by the CDN. Hence, we can
evaluate whether or not a server is a valid CDN cache with
our TLS scanner. The server is verified as CDN cache if it
successfully completes a TLS handshake for a domain we have
manually observed to be cached by the CDN and, therefore,
proves possession of a valid certificate and the respective
private key.

This analysis focused on the CDNs of Cloudflare, Fastly,
Akamai and Alibaba. The CDN fingerprints were collected
based on the scanned IP addresses located within their re-
spective AS. The HTTP Server header is used to enhance
the mapping, as described by Gigis et al. [15]. Note that
for Fastly, the AS was sufficient to detect their CDN servers.
Table III lists an overview of the results showing a strong
correlation between the TLS fingerprint and the CDNs. Almost
all targets with a CDN fingerprint were located within a CDN
AS. The rate was higher than 99% for Cloudflare and Fastly.
In addition, 7% of the targets we falsely assigned to one of
the CDNs turned out to be valid caches of the CDNs from
Akamai and Cloudflare outside of their respective networks.
We will discuss these targets more detailed in section VI.

A simple multi-label classifier can be built using these
data, by identifying a CDN server purely from their TLS

4https://routeviews.org/
5https://pypi.org/project/pyasn/

https://routeviews.org/
https://pypi.org/project/pyasn/


80%

90%

100%
Akamai Alibaba

2021-08
2021-09

2021-10
2021-11

2021-12
2022-01

2022-02

Measurement Date

80%

90%

100%
Cloudflare

2021-08
2021-09

2021-10
2021-11

2021-12
2022-01

2022-02

Measurement Date

Fastly

Precision
Recall

Fig. 3. Evaluation of a CDN server classifier. It was trained with TLS
fingerprints from weeks [1..n] and evaluated on week n.

fingerprints. The classifier was trained with the data of weeks
[1..n]. It classifies a target in the n+1th week as a CDN server
if the fingerprint was observed at least 10 times from the CDN,
and the certificate was valid in these cases. This decision was
always unambiguous because the fingerprints did not overlap.
We evaluated the metrics precision and recall per CDN for
each week. The precision and the recall are defined as TP

TP+FP

and TP
PP , respectively. The number of true observations PP

is the sum of targets either (i) located within the CDN AS
with the appropriate HTTP Server header values (according
to Gigis et al. [15]) or (ii) validated as a CDN cache with the
TLS scanner. Figure 3 illustrates the results. The precision was
high with more than 85% for Alibaba and Akamai and more
than 99% for Cloudflare and Fastly. The networks of the latter
were much more uniform and easily clusterable compared to
those of Alibaba and Akamai.

An interesting drop of the recall was observed for Fastly
in October 2021. This drop was caused by a Server Be-
havior change, where new behaviors not covered by finger-
prints from the previous measurement dates were observed.
We particularly noticed fewer handshakes to complete with
http/1.1 as an ALPN. The new behavior was seen in the
later measurements stabilizing the recall. Therefore, a potential
fingerprint database must be regularly updated to provide
the best performance. We introduced a threshold of 10 valid
observations because we had a few cases, in which an Alibaba
server responded with a fingerprint we could attribute in most
other cases to Tengine webservers (inferred from the HTTP
header). This webserver is not only deployed by Alibaba; thus,
it would have produced many false positives. Not considering
these fingerprints caused the recall drop for Alibaba in 2022.
Additionally, Alibaba has a more diverse cloud portfolio on
offer compared to the other examined companies that could
be the reason for the fluctuations in the precision and recall.

Our fingerprints were able to detect minor differences
among the deployments of the same CDN. This means,
sometimes, the approach was too specific for the general
use case to detect just the CDN. We mitigated this problem
by mapping multiple fingerprints to each CDN covering all
of these variations. To detect Akamai, Alibaba, Cloudflare,

TABLE IV
FINGERPRINTING RESULTS FOR THE C2 SERVERS. COMBINING OUR

FINGERPRINT (FP) WITH HTTP DATA RESULTS IN MORE FPS AND
DISTINCT TARGETS (TAR.) UNIQUE TO A C2 LABEL.

C2 Label Total Unique Unique (+HTTP)1 New Obs.

Tar. FPs Tar. FPs Tar. FPs Total Known FP

Dridex 311 9 1 2 137 4 193 193
TrickBot 276 28 31 8 106 16 192 175
QakBot 127 6 0 0 122 3 86 72
BazarLoader 116 16 27 4 28 5 87 40
Emotet 92 3 1 1 1 1 83 62
Ransomware 12 2 0 0 0 0 11 10
CobaltStrike 11 9 1 6 5 7 4 4
AsyncRAT 11 3 0 0 0 0 9 7

Other 28 18 15 10 16 13 13 6

1 Combining TLS fingerprints with the HTTP Server header.

and Fastly we have used 86, 1, 801, and 87 fingerprints,
respectively.

In summary, with TLS fingerprinting, large CDN deploy-
ments can be identified because they share a common TLS
behavior. The precision was above 99% for some CDNs,
and we have found several CDN caches in unexpected ASs.
After showing that the approach works with major known
deployments, we will now apply it to a much smaller sample
size identifying potentially malicious C2 servers.

D. Case study: Identifying C2 servers

Aside from identifying CDN deployments, TLS fingerprint-
ing can also be used to identify and track potentially malicious
targets like C2 servers.

Blocklists containing C2 servers are used as an indicator
of malicious behavior. Table IV presents the measurement
results for each C2 label. The Ransomware, AsyncRAT, and
CobaltStrike labels are from the SSLBL [29]. The remaining
labels are from the Feodo Tracker [30]. Several fingerprints
are unique to a certain type of C2 server. However, these
unique fingerprints cover only a small part of all observa-
tions. The number of unique fingerprints gradually increases
by combining fingerprints with additional HTTP data (i.e.,
the HTTP Server header containing values like nginx or
Apache/2.4.18). New servers added to the blocklists re-
peatedly had the same fingerprint as past servers, that is, 95%
of the targets added during week n+1 have fingerprints already
observed for this label during weeks [1..n]. In other words,
these servers could be identified through fingerprinting.

This work uses a binary classifier to decide whether or not
a server is a C2 server from a blocklist. The classifier takes
a threshold t as a parameter and predicts a C2 server if the
C2 rate of the observed fingerprint is higher than t. This rate
is calculated for each fingerprint by dividing the number of
times observed from a C2 server by the total number of times
seen in the training data (e.g., a threshold of 80% means a
fingerprint must be observed more than 80% of the times from
blocklists such that servers with this fingerprint are classified
as a C2 server). The classifier is evaluated on every new target



0% 20% 40% 60% 80% 100%
Threshold

0%

50%

100%

(a) TLS Fingerprint (10 CHs)

0% 20% 40% 60% 80% 100%
Threshold

0%

50%

100%

(b) HTTP Data (Server Header)

0% 20% 40% 60% 80% 100%
Threshold

0%

50%

100% Precision
Recall

(c) Combined (10 CHs + HTTP Data)

Fig. 4. Precision and recall to identify new observations on our input lists as C2 servers using the data described in Figs. 4a to 4c as input for the classification.

added to a toplist or a blocklist during week n + 1 based on
the training data from weeks [1..n]. The precision and the
recall are defined as TP

TP+FP and TP
PP , respectively. The true

observations PP are the responsive targets found on a block-
list. Figure 4 shows results for different thresholds for three
data sources to construct the input for the classification. The
classifier performance will greatly increase if the fingerprints
are combined with additional data from the HTTP Server
headers. This HTTP datum alone is unsuited for a classifier,
but when combined, it achieves a maximum precision of 99%
for 35% of the added C2 servers. In contrast to the CDN
detection, the low recall is an indicator that our fingerprinting
was not fine-grained enough to detect the differences in the
deployments needed to identify all C2 servers. Augmenting
the fingerprints with HTTP data was our solution to improve
this granularity for more effective fingerprinting.

This analysis demonstrates that many C2 servers have a
very unique TLS behavior that can be used to identify them.
We also presented how a classification of these servers can be
implemented on a large scale, and that such an approach can
achieve a high precision. Additionally, a potential fingerprint
database for C2 servers would live much longer than the
entries on the used blocklists, which means that they can
provide valuable information about newly deployed C2 servers
until their IP addresses get publicly known.

E. Comparison With JARM

After analyzing the applicability of TLS fingerprintings on
a large scale, the subsequent paragraphs have a look at the
performance of JARM [7] which can also be used to fingerprint
TLS servers. While JARM uses similar data to our approach,
we will show that both the data extracted from the TLS
handshakes and the CH selection of this work provide an
improved base for fingerprinting.

We scanned every target with the CHs used by JARM, as
well as the empirically optimized ones from this work. Thus,
we can compare both approaches. We did not use the open-
source JARM script directly because it was not able to scan
our number of targets on our hardware fast enough. Instead,
we have used our own scanner with the JARM CHs and
extracted the subset of features that JARM uses to construct
its fingerprints from our data. In particular, fingerprints were
stripped from alerts, any TLS message besides the Server
Hello, and any extension data besides the ALPN (i.e., the
IDs and the order of the extensions remained intact, and

TABLE V
COMPARING RELATED WORK JARM WITH ACTIVE TLS STACK

FINGERPRINTING (ATSF) CONSIDERING BOTH THE DIMENSIONS OF
FEATURE SELECTION AND USED CHS.

Feature selection approach JARM ATSF

Used CHs JARM ATSF JARM ATSF

Unique fingerprints 52 316 63 037 65 111 81 180
Unique C2 fingerprints 7 12 16 23
Unique C2 targets 15 43 22 64

only the data contained in these extensions were removed).
Table V presents a comparison of how the selection of features
and CHs affects the fingerprinting results. The improvements
proposed herein consistently provide better results while main-
taining the number of requests necessary for fingerprinting
the same (i.e., 10 CHs). In total, this work can differentiate
55% more Server Behaviors. Considering the C2 servers,
this improved differentiation results in 16 additional unique
C2 behaviors and four times more C2 servers identifiable
with these unique behaviors. In this case, “unique” means no
overlap was observed with any server found on a toplist.

In conclusion, TLS fingerprinting tools like JARM can
benefit from the advanced feature extraction and the systematic
design of the CHs proposed in this work to improve the
effectiveness of the approach.

VI. DISCUSSION

With our fingerprinting approach we gained new insights
into the Internet and found interesting relations among TLS
servers. Some of them, we discuss in the following paragraphs.

a) Advanced Similarity Comparison: This work explic-
itly does not obfuscate any information as done by Refs. [5]
and [7] to keep the syntactic information of each part of the
fingerprint intact. This supports explainability, allows to relate
not only equal but similar behaviors in the future, and to adapt
the fingerprints afterwards (e.g., removing the Status Request
extensions). Similar fingerprints can indicate deployments
from an actor who has done just minor configuration changes.

b) The Success of Random CHs: In the beginning we
have used the standard CH from the Go library and CHs
mimicking popular browsers for fingerprinting. However, they
could not extract enough information from servers to be effec-
tive in use cases because the responses were similar focusing
on few popular TLS configurations. In contrast, the Random



80%
85%
90%

2 4 6 8 10 12 14 16 18 20
Used Client Hellos

10%
20%
30%

Precision
Recall

Fig. 5. Influence of the CHs on the C2 detection with an 80% threshold.

CHs were empirically optimized to distinguish servers and
have unusual combinations and order of parameters. They
vary in the combination of TLS versions, ciphers, ALPNs, and
supported groups and, sometimes, are not realistic (e.g., offer
ALPNs unsuitable for webservers). Interestingly, two CHs use
TLS 1.3 and none use TLS 1.2 as legacy_version, both
is not conform to the RFC [17]. In contrast, JARM uses more
realistic CHs with fewer variations in the parameters. They
defined them through systematic subsets (e.g., the top half) or
a reversed order from a fixed input. In conclusion, the Random
CHs are very successful for fingerprinting because they have
a fuzzy character triggering more distinctive responses.

c) Adequate number of CHs for C2 detection: We de-
signed the 10 CHs as a general-purpose configuration to
provide a good base for a classification. However, for specific
use cases they can be different. We scanned every server with
10 optimized and 10 JARM CHs; hence, the classification
performance shown in Fig. 4a can be recomputed using up
to 20 CHs as input for an 80% threshold. We used the
same strategy to add CHs to the classification input as in
section IV. While the precision was high for almost all
sets of CHs, scanning with multiple ones mainly increased
the number of classified servers (visible in the recall). The
maximum precision and recall was achieved with 16 CHs, but
the gain was minimal after eight CHs. For this detection use
case, multiple CHs are necessary, but eight CHs would have
been sufficient. Additionally, an adaptive scanning approach
could be implemented in the future work, where additional
requests are only sent to a server if the precision of its current
classification is not high enough.

d) CDN Caches in a Foreign AS: We were not able to
correctly identify all reasons why some domains resolved to
CDN caches in a foreign AS. In particular, 80% of them were
located in an AS from VTC Digicom, Amazon, or Render.
Interestingly, the whole Render AS was proxied through
Cloudflare and its IP address prefix functioned as CDN cache.
It is possible that we have observed the effect of operators
that try to remain in control of their traffic flow (e.g., by
deploying a Meta-CDN [31]) because 68% of the domains
pointing to a CDN cache in a foreign AS used a nameserver
unrelated to the CDN. To our knowledge, Cloudflare does
not operate CDN caches outside of their ASs. At least six of
these caches turned out to be reverse proxies set up by third
parties; investigated with a tracing endpoint6 suggested to us

6https://cloudflare.com/cdn-cgi/trace

by Cloudflare. Additionally, our data contained 1 094 outlier
domain names resolving to the public Domain Name System
(DNS) resolver 1.1.1.1, which was apparently also a cache
of the Cloudflare network. 76% of these domain names used a
Cloudflare nameserver. In contrast to Cloudflare, Akamai has
deployed CDN caches in more than 1k foreign ASs to localize
their traffic [32]. However, we detected just 20 ASs because
we did not scan the full IPv4 address space, but IP addresses
resolved from the toplists. Akamai uses the DNS to distribute
the load on their servers [32]. We assume, we saw these ASs
because our scan traffic was not always directed to the closest
CDN cache but distributed across servers in multiple ASs.

e) CDN Inconsistencies: Some CDN caches were in-
consistent in their responses because not every IP address
successfully responded to every domain name requested. To
the end, multiple domain names were necessary to validate
caches. For Cloudflare, this was only a single IP address
located in China. For Akamai, bigger clusters were visible
and multiple domain names were needed to verify them.

f) Unstable Fingerprints: Some targets had inconsistent
fingerprints that could be caused by the server or by more
complex setups. Sometimes, we saw indicators of load bal-
ancers in the HTTP Server header indicating that the actual
fingerprinted server could change during the scan process. This
is also the main limitation of our approach because it relies
on multiple TLS connections to connect to the same Server
Behavior. However, this was rarely an issue (section V-B).

VII. CONCLUSION

This work proposed a methodology for acquiring and
leveraging TLS metadata with the help of large scale active
measurements. The value of the approach is backed by two
measurement studies on the Alexa and Majestic toplists and
two C2 blocklists over half a year to detect CDN and C2
servers. New C2 servers added to the blocklists were classified
with a precision higher than 99%. Depending on the CDN
and their infrastructure, the detection precision ranged from
85% (Akamai and Alibaba) to more than 99% (Cloudflare and
Fastly). Additionally, 351 IP addresses were identified serving
CDN content outside of the AS operated by the CDN.

The results were obtained with a reasoned selection of the
features extracted from TLS handshakes and with the use of
multiple scanning probes to construct fingerprints of the TLS
stack on servers. These 10 probes were empirically optimized
to provide as much information as possible while minimizing
the measurement time and the ethical impact on targets.

This paper describes in detail how TLS stack fingerprinting
can be efficiently conducted and proves that these data can be
applied on real-world classification problems like C2 detection
to provide valuable security-related insights.

Moreover, the extended feature extraction and improved CH
design can improve existing TLS fingerprinting tools while
maintaining the active scanning effort. Given the approach is
independent of the actual CHs, we expect future works to tune
their CHs to specific use cases, or individually adapt them on
a per-server level.

https://cloudflare.com/cdn-cgi/trace


REFERENCES

[1] C. Labovitz, “Internet traffic 2009-2019,” in Proc. Asia
Pacific Regional Internet Conf. Operational Technolo-
gies, 2019.

[2] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson,
N. Vallina-Rodriguez, and J. Caballero, “Coming of Age:
A Longitudinal Study of TLS Deployment,” in Proc.
ACM Int. Measurement Conference (IMC), 2018.

[3] B. Anderson and D. A. McGrew, “Accurate TLS finger-
printing using destination context and knowledge bases,”
CoRR, vol. abs/2009.01939, 2020.

[4] M. Husák, M. Cermák, T. Jirsı́k, and P. Celeda,
“Network-Based HTTPS Client Identification Using SS-
L/TLS Fingerprinting,” in 2015 10th International Con-
ference on Availability, Reliability and Security, 2015.

[5] J. Althouse, J. Atkinson, and J. Atkins,
“TLS Fingerprinting with JA3 and JA3S,” 2019.
[Online]. Available: https://engineering.salesforce.com/
tls-fingerprinting-with-ja3-and-ja3s-247362855967

[6] Sean Gallagher, “Nearly half of malware now use TLS
to conceal communications,” 2021. [Online]. Available:
https://news.sophos.com/en-us/2021/04/21/nearly-half-
of-malware-now-use-tls-to-conceal-communications/

[7] J. Althouse, A. Smart, R. Nunnally, Jr., and M. Brady,
“Easily Identify Malicious Servers on the Internet
with JARM,” 2020. [Online]. Available: https:
//engineering.salesforce.com/easily-identify-malicious-
servers-on-the-internet-with-jarm-e095edac525a

[8] Censys.io. Data Definitions. Last accessed Feb.
24, 2022. [Online]. Available: https://search.censys.io/
search/definitions

[9] L. G. Greenwald and T. J. Thomas, “Toward unde-
tected operating system fingerprinting,” in Proceedings of
the First USENIX Workshop on Offensive Technologies.
USENIX Association, 2007.

[10] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov,
“Hershel: Single-Packet OS Fingerprinting,” IEEE/ACM
Transactions on Networking, 2016.

[11] G. F. Lyon, Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scan-
ning. Insecure, 2009.

[12] Dirk Wetter. Testing TLS/SSL encryption. Last accessed
March 1, 2022. [Online]. Available: https://testssl.sh/

[13] T. Chung, J. Lok, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, J. Rula, N. Sullivan,
and C. Wilson, “Is the Web Ready for OCSP Must-
Staple?” in Proc. ACM Int. Measurement Conference
(IMC), 2018.

[14] D. E. Eastlake, “Transport Layer Security (TLS) Exten-
sions: Extension Definitions,” RFC 6066, 2011.

[15] P. Gigis, M. Calder, L. Manassakis, G. Nomikos,
V. Kotronis, X. Dimitropoulos, E. Katz-Bassett, and
G. Smaragdakis, “Seven Years in the Life of Hypergiants’
off-Nets,” in Proc. ACM SIGCOMM, 2021.

[16] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost,

N. Vallina-Rodriguez, and O. Hohlfeld, “Tracking the
Deployment of TLS 1.3 on the Web: A Story of Exper-
imentation and Centralization,” ACM SIGCOMM Com-
puter Communication Review, 2020.

[17] E. Rescorla, “The Transport Layer Security (TLS) Pro-
tocol Version 1.3,” RFC 8446, Aug. 2018.

[18] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and
R. Holz, “Mission Accomplished? HTTPS Security after
Diginotar,” in Proc. ACM Int. Measurement Conference
(IMC), 2017.

[19] O. Gasser, M. Sosnowski, P. Sattler, and J. Zirngibl.
Goscanner. https://github.com/tumi8/goscanner.

[20] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap:
Fast internet-wide scanning and its security applications,”
in Proc. USENIX Security Symposium, 2013.

[21] D. Dittrich and E. Kenneally, “The Menlo Report: Ethical
principles guiding information and communication tech-
nology research,” US Department of Homeland Security,
2012.

[22] C. Partridge and M. Allman, “Addressing Ethical Con-
siderations in Network Measurement Papers,” Communi-
cations of the ACM, 2016.

[23] “Active TLS Stack Fingerprinting: Additional
Material”,” 2022. [Online]. Available: https://active-
tls-fingerprinting.github.io/

[24] IANA, “Transport Layer Security (TLS) Parameters,”
last accessed March 1, 2021. [Online]. Avail-
able: https://www.iana.org/assignments/tls-parameters/
tls-parameters.xhtml

[25] Alexa, “Top 1M sites,” last accessed 28 Feb.
2022. [Online]. Available: http://s3.dualstack.us-east-
1.amazonaws.com/alexa-static/top-1m.csv.zip

[26] Majestic, “The Majestic Million,” last accessed 28 Feb.
2022. [Online]. Available: https://majestic.com/reports/
majestic-million/

[27] D. R. L. Brown, “SEC 2: Recommended Elliptic
Curve Domain Parameters,” 2010. [Online]. Available:
http://www.secg.org/sec2-v2.pdf

[28] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmer-
mann, S. D. Strowes, and N. Vallina-Rodriguez, “A Long
Way to the Top: Significance, Structure, and Stability
of Internet Top Lists,” in Proc. ACM Int. Measurement
Conference (IMC), 2018.

[29] abuse.ch, “SSL Certificate Blacklist,” last accessed Feb.
28, 2022. [Online]. Available: https://sslbl.abuse.ch/

[30] ——, “Feodo Tracker,” last accessed Feb. 28, 2022.
[Online]. Available: https://feodotracker.abuse.ch/

[31] O. Hohlfeld, J. Rüth, K. Wolsing, and T. Zimmermann,
“Characterizing a Meta-CDN,” in Proc. Passive and
Active Measurement (PAM), 2018.

[32] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai
Network: A Platform for High-Performance Internet Ap-
plications,” ACM SIGOPS Oper. Syst. Rev., 2010.

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://search.censys.io/search/definitions
https://search.censys.io/search/definitions
https://testssl.sh/
https://github.com/tumi8/goscanner
https://active-tls-fingerprinting.github.io/
https://active-tls-fingerprinting.github.io/
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
http://s3.dualstack.us-east-1.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.dualstack.us-east-1.amazonaws.com/alexa-static/top-1m.csv.zip
https://majestic.com/reports/majestic-million/
https://majestic.com/reports/majestic-million/
http://www.secg.org/sec2-v2.pdf
https://sslbl.abuse.ch/
https://feodotracker.abuse.ch/

	Introduction
	Related Work
	Methodology
	Features Extracted from TLS Handshakes
	Fingerprinting with Multiple Requests
	Active Measurements under Ethical Considerations

	Systematic Design of Client Hellos
	Longitudinal Study of Toplists and Blocklists
	Data
	Consistency of TLS Fingerprints
	Case study: Detecting CDN server deployments
	Case study: Identifying C2 servers
	Comparison With JARM

	Discussion
	Conclusion

