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Abstract—Headlessly downloading webpages is a common and
useful mechanism in many measurement projects. Such a basic
task would seem to require little consideration. Indeed, most
prior work of which we are aware chooses a relatively basic
tool (like Selenium or Puppeteer) and assumes that downloading
a page once yields all of its content—which may work well
for static content, but not for dynamic webpages with third-
party content. This paper empirically establishes sound methods
for downloading webpages. We scan the Alexa top-10,000 most
popular websites (and other, less popular sites) with different
combinations of tools and reloading strategies. Surprisingly, we
find that even sophisticated tools (like Crawlium and ZBrowse)
do not get all resources or links alone, and that downloading
a page even dozens of times can miss a significant portion of
content. We investigate these differences and find that they are,
surprisingly, not strictly due to ephemeral content like ads. We
conclude with recommendations for how future measurement
efforts should download webpages, and what they should report
on.

Index Terms—web crawling, Crawlium, ZBrowse

I. INTRODUCTION

Today’s web is highly dynamic, with extensive third-
party inclusions [8, 2, 15] such as basic resources
(e.g., fonts.google.com), user tracking (e.g.,
scorecardresearch.com), or advertising.

One can think of today’s websites as complicated inclusion
graphs [2], wherein the nodes are resources loaded from
domain names, and there is a directed edge from resource
r1 to resource r2 if r1 caused r2 to be loaded (e.g., if r1
were a JavaScript file that generated a GET request for an
advertisement r2).1 It is important to many research ques-
tions to be able to obtain as full a picture of a webpage’s
inclusion graph as possible. For instance, explorations into
third-party inclusions [2, 8, 15], malware [9], and website
performance [13] are all sensitive to how complete a view
of the graph they can obtain at any point in time.

This paper asks a straightforward question: What is the
best way to download a webpage so as to obtain as much
of the page’s inclusion graph as possible at any one point
in time? Getting a full snapshot of a webpage’s inclusion
graph can be very difficult, owing to the fact that: (1) The
domains, resources, and edges that make up the website’s

1Arshad et al. [2] originally introduced these as inclusion trees, but we refer
to them as inclusion graphs because we observe that nodes can commonly
have more than one incoming edge.

inclusion graph can vary dynamically, even from back-to-
back refreshes. (2) Resources are loaded in myriad ways,
such as through static inclusions in HTML, dynamic calls in
JavaScript, WebSockets, and so on.

We look at this question from two key perspectives:

What effect does the choice of tools have on the obtained
inclusion graph? Early efforts used basic tools such as curl
or wget, but neither of these support executing JavaScript,
which has been shown to be deployed in more than 93% of
the most popular webpages [14]. More recent measurement
efforts tend to use headless versions of more full-fledged
browsers, and programmatic front-ends such as Puppeteer [16]
or Selenium [17] to drive them. It would seem at first glance
that, so long as the headers and the backing browser are the
same, the inclusion graphs would be the same, too.

To evaluate this hypothesis, we compare two recent, so-
phisticated tools that arose from the research community:
Crawlium [6] and ZBrowse [18]. We find that, surprisingly,
both obtain parts of the resource graph that the other does
not, even when providing the same headers and controlling
for dynamic webpage content.

How many times should one refresh a page to obtain a
more complete snapshot of a webpage’s inclusion graph?
To answer this question, we repeatedly download websites
and compare the nodes and edges in the inclusion graph
with each refresh. We find that there is a surprisingly high
variability in the dynamism of websites, with some (like
wikipedia.org) being highly static over short periods of
time, and others resulting in new content with virtually every
refresh. The majority of websites are somewhere in the middle:
that is, their inclusion graph can be captured in its entirety
by reloading the page several times. We present and analyze
an adaptive webpage loading strategy that fully obtains the
inclusion graph without excessive reloads for any page.

We analyze both of these questions across the Alexa top-
10,000 (and 10,000 sites selected randomly from the 10,001-
1M Alexa-ranked sites), and using multiple UserAgent
strings, to rule out potential differences between desktop
and mobile version of websites. Collectively, our results lead
us to a set of considerations that researchers should have
when obtaining and analyzing inclusion graphs. To assist
in these future efforts, we have made our code and data
publicly available at https://breakerspace.cs.umd.
edu/web-topology978-3-903176-40-9 ©2021 IFIP



The rest of this paper is organized as follows. In Section II,
we review background and related work. In Section III, we
evaluate the effect that different tools can have by comparing
the resource graphs obtained by two popular tools (Crawlium
and ZBrowse), and find that neither of them gets the entire
inclusion graph, but that they do complement one another.
One tempting explanation for these results is that tools differ
simply because websites are highly dynamic; in Section IV, we
show this not to be the case, but rather some tools consistently.
get parts of the inclusion graph that other tools do not. In
Section V, we analyze how many times webpages should be
loaded to obtain a full view of the inclusion graph, and propose
an adaptive downloading strategy. Finally, in Section VI, we
conclude with a set of recommendations.

II. BACKGROUND AND RELATED WORK

Before webpages had dynamic content, it would suffice to
use curl or wget, but neither of these include a JavaScript
engine, and thus miss a large portion of the web’s content.
However, even as early as 2012, Nikiforakis et al. [14] showed
that more than 93% of the most popular websites include
JavaScript from external sources. Many research projects seek
to measure as many third-party resource inclusions as possi-
ble [8, 10, 9, 3, 5, 4, 1, 11, 12], making more sophisticated,
headless browsers a necessity.

To address this need, many researchers use Puppeteer [16],
a Node.js library that gives programmatic control—and data
collection—over a headless Chromium browser. For instance,
with Puppeteer, one can perform various user actions (navigate
to a page, scroll, follow links, etc.) and trigger on various
browser events (when a page loads, when a request is or will be
made, etc.). To collect information about the specific resources
and links that comprise a webpage, one has to choose which
events to trigger on.

In this paper, we consider two tools that arose from the
research community, and that take complementary approaches:
• ZBrowse [18] uses Node.js’s built-in
getResourceTree method for obtaining the
DOM tree after the webpage has been loaded. It
also augments this tree by collecting data from two
network event triggers: requestWillBeSent and
responseReceived.
• Crawlium [6] triggers on the same network events as
ZBrowse, plus others to capture data sent and received via
web sockets, frame navigation, new execution contexts,
the parsing of scripts, and when the console API is
called. Rather than using Node.js’s built-in resource tree
construction, Crawlium builds its own tree from the
collection of the various network events.

As their motivation for creating Crawlium, Arshad et al. [2]
observe that merely obtaining the DOM tree (which can
be obtained by most other tools) can miss out on critical
resource inclusions, and thus incorporate the other triggers
above. ZBrowse uses Node.js’s DOM tree, but overcomes
this limitation at least in part by augmenting the tree with
inclusions learned from network events [18, 10]. Based on

what data they collect, it would seem that Crawlium should
capture a strict superset of the resources that ZBrowse does.
Yet, surprisingly, our results will show this not to always be
the case.

Throughout our study, we will demonstrate several mea-
surement parameters that can have a significant effect on
how much of the inclusion graph a tool is able to obtain. In
particular, we will show that the UserAgent string, number
of times the page is loaded, specific Node.js event handlers,
and the method by which the inclusion graph is constructed
can lead to significant differences. Surprisingly, many studies
fail to specify precisely what these parameters are. The papers
that introduce Crawlium [2] and ZBrowse [10] specify their
tools’ network events, but do not investigate multiple page
loads.

Other studies have investigated the variation of page content
from one page-load to another. Zeber et al. [19] and Englehardt
and Narayanan [7]—as part of broader studies—both used
OpenWPM, a Selenium-based web privacy measurement tool,
to compare resources obtained between a pair of simultane-
ous or back-to-back crawls. Their results broadly agree, and
indicate that the same third-party URLs are loaded 28% of the
time and the typical overlap is about 90%. We study a slightly
different question: how many page loads would we need in
order to exhaustively obtain the inclusion graph? Our study
also extends upon these prior efforts by comparing multiple
tools and presenting an adaptive page-loading technique for
obtaining more complete inclusion graphs.

III. WHAT EFFECT DO TOOLS HAVE?

In this section, we ask: does choosing a different automation
tool result in a different inclusion graph, even if all other fields
(headers and UserAgent strings) are kept the same?

Because we are focused on obtaining the inclusion graph,
this precludes tools that obtain web content but do not record
the precise provenance necessary to construct the inclusion
graph. For this reason, we do not explore OpenWPM [7],
Puppeteer, or Selenium. Certainly, these could all be modified
to obtain the inclusion graphs, and so doing would be an
interesting (and useful) endeavor. The goal of our work is
not to exhaustively compare all tools, but to demonstrate that
even seemingly minor differences in two tools can result in
significantly different results.

As described in Section II, we focus our study on two
seemingly similar tools that natively report on the inclusion
graph: Crawlium [2, 3, 5, 4] and ZBrowse [10, 8]. We chose
these specific tools because they are, to our knowledge, the
state-of-the-art of methods for collecting an inclusion graph,
and we decided to consider inclusion graphs as they represent
a superset of the information that one could extract from a
webpage.

A. Methodology

To compare what the tools obtain, we use them to download
each webpage in the Alexa top-10k most popular websites,
as well as 10k less popular websites chosen uniformly at
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Fig. 1: Comparison of the domains, edges, and resources obtained by Crawlium and ZBrowse when obtaining the Alexa
top-10k sites. These plots compare when both Desktop and Mobile UserAgent strings are used.
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Fig. 2: This is the same as Figure 1, but focused instead on less popular sites (a random selection of 10k sites from the Alexa
top 10,001–1M most popular websites). Less popular sites tend to have more in common between the two tools.

random from the websites with Alexa rank between 10,000
and 1M. We use the Alexa ranking instead of the Tranco list,
because Tranco list contains the most popular URLs that are
visited, be it by human action or not, while Alexa ranking
list contains the most popular sites that users explicitly go
to. For instance, googletagmanager.com is ranked 15 in
the Tranco list while it is not ranked anywhere in Alexa top
10,000 websites. Alexa-ranked websites tend to include more
third-party resources (including those that are Tranco-ranked),
and thus we view Alexa as a sort of “worst case scenario” for
crawling an inclusion graph.

These tools require protocols to be explicitly given (https
versus http) and can fail on some pages without the www
subdomain. To account for this, we try loading each page
in the following order of prefixes, whichever succeeds first:
https://, https://www., http://, http://www..

We will demonstrate in Section V that it is important to
reload a webpage multiple times to ensure broad coverage
of the page’s inclusion graph. For the results in this section,
we use the Adaptive strategy with δ = 3: that is, for each
individual page, and for each tool, we load the webpage
repeatedly until there are three consecutive page loads that
yield no new domains or edges, up to a maximum of 30 page
loads. We disable caching between separate page loads, and
we wait until the page has loaded completely (or timed out,
at 2 minutes) before continuing.

To evaluate whether the tools’ coverage differ for desktop
versus mobile browsing, we run two separate trials with

different UserAgent strings: one2 (Desktop) that purports
to be running Chrome in Mac OS X, and another3 (Mobile)
that claims to be Chrome on iOS. We performed several tests
comparing desktop- and mobile-builds of the browsers, but
observed no difference, so in our experiments we used the
desktop-build but varied the UserAgent string.

After downloading each of the Alexa top-10k sites, we
union together the resources (complete URL) obtained, the
corresponding fully-qualified domains and the directed edges
between them representing the redirections/loading to con-
struct a complete inclusion graph for each individual site.
Unfortunately, Crawlium and ZBrowse both sometimes fail to
download webpages; to permit a direct comparison in this sec-
tion, we only compare the 8,221 pages among the Alexa top-
10k sites for which both tools were successful in downloading
them. We observed two broad reasons for failure: exceeding
our two-minute timeout (reducing this failure would have
required drastically increasing our time to collect data), and
ephemeral errors in reaching the websites (which we verified
by manually visiting the websites at the time). We compare the
data only for those websites which have successful downloads
for both tools and both UserAgent strings. We accordingly
downsampled from the less-popular webpages to 8,221, as
well.

2Mozilla/5.0 (Macintosh; Intel Mac OS X
10_13_6) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/80.0.3987.149 Safari/537.36

3Mozilla/5.0 (iPhone; CPU iPhone OS 13_3 like
Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko)
CriOS/69.0.3497.105 Mobile/15E148 Safari/605.1
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Fig. 3: How the domains found by only one tool compare to
the domains found by the other. The tools show no significant
difference for less popular sites.

For each of the webpages we could successfully download,
we obtained four inclusion graphs, accounting for the two
tools and the two UserAgent strings. This gave us a total of
65,768 inclusion graphs (4 × 8,221 = 32,884 for the most
popular, and an equal number for the less popular sites).
For a particular website, we alternated between Crawlium
and ZBrowse and ran both the tools until no new data was
obtained. We did this simultaneously for both the mobile and
desktop UserAgent strings. Thus, the data for a single page
load of any particular website for both devices is obtained with
a difference of less than our timeout of two minutes (typically
much less) to enable thorough comparison.

B. Results

We begin by comparing the percentage of data that is
obtained only by Crawlium, only by ZBrowse, and common to
both. Figure 1 presents the comparison between the (a) fully
qualified domains, (b) inclusion graph edges, and (c) resources
obtained by Crawlium and ZBrowse for Alexa top-10k sites.
Figure 2 presents the equivalent data for the less-popular sites.
We observe that the most and least popular sites show similar
trends, but that in general there is more agreement between
tools for less popular sites. For the remainder of this section,
we focus on the top-10k most popular sites, but our overall
observations hold independent of popularity.

We investigate the three data types in turn.

Differences in domains Figure 1(a) shows that, for the
median webpage, Crawlium and ZBrowse agree on over 90%
of the domains for both desktop and mobile. About 40% of
webpages in the Alexa top-10k return the exact same domains
to both tools (this corresponds to the jump in the common
line at x=100%). However, there is still a significant fraction
of webpages where the tools differ considerably. For 20% of
webpages, they disagree by 38% of the domains for desktop
and 33% for mobile.

When they disagree, Crawlium tends to obtain more domain
names than ZBrowse, as expected, but surprisingly, ZBrowse is
still able to obtain many domains that Crawlium does not. This
is surprising because Crawlium subscribes to more network
events than ZBrowse.

We initially hypothesized that the tools’ differences may
be superficial, and attributable to load balancing, such as
one tool obtaining gtms01.alicdn.com and the other
obtaining gtms03.alicdn.com. To better understand the
nature of the differences between the two tools, Figure 3
shows how different the domains are. To ensure consistency
in the differences, the data is compared not for a single page
load but for multiple page loads (until three consecutive page
loads yield no new data). Each group of numbers in this plot
correspond to the percentage of domains that are unique to
the specific tool (and UserAgent), broken down into three
categories:

First are the domain names that, although unique, are very
similar to a domain name that the other tool obtained. More
precisely, the tool finds a domain d for which there is another
domain d′ found by the other tool that shares the same
effective second-level domain (E2LD, e.g., “example.com”
in “www.example.com”) and the subdomain has a Lev-
enshtein distance of at most 3 (not including the separating
period). For instance, this category would include prefix
differences, for example http://www.maxtv.cn obtained
by one tool, while both obtain https://maxtv.cn The
second category is ones where the E2LD matches but the
subdomain differs by a Levenshtein distance of more than 3.
Finally, the third category are domains found by the given tool
for which there is no matching E2LD found by the other tool.

Figure 3 shows that only a small fraction (9–11%) of
differences are attributable to very similar domains. Rather, the
bulk of the differences are due to finding completely different
domain names.

Differences in edges Crawlium and ZBrowse disagree sig-
nificantly more on edges than they do on domains. As shown
in Figure 1(b) , for the median website, the tools agree on
only 43% of the edges (55% for less popular sites). Moreover,
less than 8% of webpages yield the same exact edges in both
tools. For 70% of webpages, ZBrowse regularly finds fewer
unique edges in the inclusion graph than Crawlium, especially
for mobile webpages. In the long tail, there are about 10%
of pages for which ZBrowse finds considerably many more
edges than Crawlium on the desktop. Much like with domain
names, this indicates that, although Crawlium does generally
outperform ZBrowse, there is no clear winner.

To better understand the nature of the differences, we
investigated the two domains on either side of each unique
edge. For an edge d1 → d2 that is unique to one of the
tools, there are three possibilities: either the other tool also
had downloaded domains d1 and d2, or it had only one of the
two, or it had neither.

Figure 4 shows the breakdown of the unique edges for both
tools and UserAgent strings. Interestingly, more than 70%
of the edges that are unique to the tools are due to the edges
between domains both tools found in common. This is likely
due to differences in how the two tools compute their inclusion
graphs. Recall that ZBrowse uses Node.js’s built-in method for
obtaining the DOM tree, while Crawlium builds it from scratch
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Fig. 4: When a tool obtains a unique edge, how often both
tools observe the edge’s domains. The tools show only slightly
greater agreement for less popular domains.

by listening on all events. ZBrowse is less likely to discover
edges with both unique domains when compared to Crawlium,
owing in part to the fact that Crawlium obtains more domains
that ZBrowse does not.

Once again, we conclude that Crawlium and ZBrowse offer
complementary data: ZBrowse is more adept at identifying
edges in the domains that the two tools share in common, but
Crawlium obtains more domains, which allows it to find more
edges, as well.

Differences in resources Finally, we turn to the differences
in the resources the two tools obtain. Figure 1(c) shows
that the two tools differ considerably in which resources they
return, with the median Desktop webpage having 41% of the
resources in common (45% for the median Mobile page, and
60% for less popular pages). Like with edges, slightly less than
10% of webpages had the same exact resources. This is to be
expected based on the previous results; many websites load
multiple resources from the same domains, so when domains
differ, resources will, as well.

C. Recommendations

Based on the above results, we make the following recom-
mendations:

Report what specific events are triggered. Tools and papers
that use headless browser APIs like Puppeteer should clearly
articulate which events they trigger on.

Compare against other tools. Future tools should compare
directly to one another, and report on the differences in the
domains, resources, and edges the tools are able to obtain.

To maximize coverage, use complementary tools concur-
rently. If the goal is to maximize coverage of a website—
that is, to obtain as many domains, edges, or resources as
possible—then one should consider using two complementary
tools concurrently.

In the remainder of this paper, we use both Crawlium and
ZBrowse concurrently.

IV. IS DISAGREEMENT CAUSED BY DYNAMISM?
Section III showed that different tools can result in different

inclusion graphs. One tempting explanation for this is that

the differences arise from the fact that webpages today are
highly dynamic, rather than something inherent to the tools
themselves. In this section, we show this not to be the case.

Rather, we observe many instances in which one
tool consistently obtains a given domain, edge, or
resource that the other tool rarely or never gets.
For example https://www.nytimes.com utilizes
all 30 page loads to obtain data. Crawlium obtains
https://stats.g.doubleclick.net in all 30 page
loads, yet ZBrowse does not obtain it once. Similarly, ZBrowse
obtains https://pixel.adsafeprotected.com in
all 30 page loads and Crawlium obtains it in only 23.

To study this more broadly across all of the domains we
measured, we compute, for every domain d loaded from every
Alexa site a, how many times d appeared in each of the page
loads of a. We compute this separately for both Crawlium and
ZBrowse. To rule out any potential domain name differences
caused by load balancing, we perform our analysis strictly
over E2LDs: this should result in greater agreement between
the two tools.

We plot these as heatmaps in Figures 5 and 6, where each
value (x, y) is the number of (Alexa, domain) or (Alexa, edge)
pairs that were obtained x times by Crawlium and y times by
ZBrowse. In these plots, white cells correspond to zero, and
all other cells are colored from blue (low) to red (high) on
a logarithmic scale. Note that the cells at (0, 0) are always
white, because we only compare domains that were loaded at
least once by at least one of the tools. If the two tools were
in complete agreement, then all of the values would be along
the y = x diagonal.

Figure 5 shows the results for the webpages that required
all 30 page loads in our adaptive strategy. We note that there
are strong concentrations at the top-right corner (when both
tools get almost all of the data all of the time) and the bottom
left corner (when one tool got a data item once, and the
other tool never did). These alone would correctly account
for typical webpage dynamism. However, for domains, there
are also strong concentrations along bottom row (y = 0; when
Crawlium gets a domain that ZBrowse never does) and the top
row (y = 30, when ZBrowse consistently gets a domain that
Crawlium does not). Likewise, for edges, we also see a strong
concentration along the left column (x = 0, when ZBrowse
gets an edge that Crawlium never does).

Figure 6 shows the results for all of the webpages, regardless
of how many times they needed to reload. Here, we see a
stronger concentration along the diagonal y = x, but note that
the diagonal is effectively the union of the webpages “top right
corner” (i.e., when both tools get the data item in all of the
refreshes).

We provide several additional examples:
• doubleclick.net is loaded in all 30 page loads by 6

(and 4) Alexa websites using only Crawlium on Desktop
(and Mobile) and on 6 other Alexa websites using only
ZBrowse on both Mobile and Desktop.

• googlesyndication.com is obtained only by
Crawlium on Mobile for 6 Alexa websites.
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(c) Edges; popular.
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(d) Edges; less popular.

Fig. 5: The number of runs in which different domains and edges are obtained by Crawlium and ZBrowse, limited to the
domains that required all 30 page loads. (Desktop only shown; Mobile results are very similar.)
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(a) Domains; popular.
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(b) Domains; less popular.
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(c) Edges; popular.
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(d) Edges; less popular.

Fig. 6: The number of runs in which different domains and edges are obtained by Crawlium and ZBrowse, covering all domains
regardless of the number of page loads. (Desktop only shown; Mobile results are very similar.)

• spotxchange.com is loaded in a single page load
by 187 (and 455) Alexa websites using Crawlium only
and by 514 (and 281) other Alexa websites using only
Zbrowse on Desktop (and Mobile).

These trends cannot be explained by mere randomness
in webpage content, and instead demonstrate that there are
systemic differences between the two tools we have studied.

V. HOW MANY REFRESHES?

In this section we ask: how often does a page need to
be loaded in order to obtain all of its resources and links
at a given point in time? Barring dynamic content such as
advertising, it would seem as though the answer should be
once: downloading a webpage a single time ought to obtain
virtually all of the content. We show this not to be the case.

A. Methodology

For this part of our study, we download individual websites
many more times than in other portions of our study, and as
a result we focus here on a smaller set of domains: the Alexa
top-1,000 most popular websites. As in Section III, we use the
same order of https, http, and www, and we use both the
Desktop and Mobile UserAgent strings. Also, we download
using both Crawlium and ZBrowse, and union their nodes and
edges into a single inclusion graph for each download.

We download each webpage 30 times, in back-to-back
succession, restarting the tool and clearing the cache and
cookies each time. We chose this number because we felt it
was likely much higher than necessary (or at least higher than

Domains
≥1% ≥50% ≥75% ≥90% ≥95% ≥99%

W
eb

pa
ge

s

≥1% 1 1 1 1 1 1
≥50% 1 1 1 1 3 7
≥75% 1 1 11 22 26 29
≥90% 1 7 18 26 28 30
≥95% 1 10 20 26 28 30
≥99% 1 12 21 27 29 30

TABLE I: Number of page loads necessary to obtain column%
of domains for row% of webpages from the Alexa top-1000,
using a Desktop UserAgent.

most researchers would be willing to invest), and we found
larger values to have marginal returns for every website in our
initial test set. The union of all 30 of these inclusion graphs
provides our most complete view of the given webpage that
we have.

Our primary analysis in this section consists of computing
how many of the consecutive page loads were necessary in
order to obtain a given percentage of the domains (fully qual-
ified domain names), edges (directed edges between domains),
and resources (complete URL) from the graph of all 30.

B. Results

Of the Alexa top-1,000 webpages we crawled, 982 have
domains and resources for both Desktop and Mobile; out of
which 942 have edges on Mobile, and 930 have edges on
Desktop. We report on the 982 domains for which both tools
responded.



Resources
≥1% ≥50% ≥75% ≥90% ≥95% ≥99%

W
eb

pa
ge

s

≥1% 1 1 1 1 1 1
≥50% 1 13 21 27 29 30
≥75% 1 14 22 27 29 30
≥90% 1 15 23 27 29 30
≥95% 1 15 23 28 29 30
≥99% 1 16 24 28 29 30

TABLE II: Number of page loads necessary to obtain column%
of resources for row% of webpages from the Alexa top-1000,
using a Desktop UserAgent.

Table I shows the number of page loads necessary to obtain
column% of the domain names from row% of the webpages in
the Alexa top-1,000. For example, 22 page loads would yield
at least 90% of the domains from at least 75% of the webpages.
This table corresponds to using a Desktop UserAgent; we
find very similar results when we use a Mobile one instead,
in general requiring slightly fewer page loads.

The results for the number of page loads to obtain a given
percentage of edges are very similar (we elide the table for
space). As with domain names, we see that a surprisingly large
number (26) is required for obtaining over 90% of the edges
from over 90% of the webpages.

Finally, Table II shows how many page loads are necessary
to obtain a given percentage of resources (for Desktop; similar
numbers for Mobile). We find that webpages’ resources are
by far more dynamic than the corresponding fully-qualified
domain names from which they are loaded and the edges that
connect them.

C. Adaptive Reloading

The above results indicate that the number of reloads
necessary to obtain a large fraction of webpages’ inclusion
graphs can vary widely across webpages. Some require just a
few reloads to get over 90% of the inclusion graph, while
others require dozens of reloads. Picking a single number
of reloads risks unnecessary overhead downloading webpages
that do not need many, or risks under-sampling the webpages
that do.

We next experiment with a simple adaptive reloading heuris-
tic. The idea is to reload a webpage until there have been
at least δ ≥ 1 consecutive reloads that yield no additional
domains or edges beyond what has already been returned from
previous loadings of the page. Note that this would require
each webpage to be downloaded at least δ + 1 times. For
instance, with δ = 1, websites like wikipedia.org that
return the entire inclusion graph in a single page load would
require two page loads.

Table III presents our results comparing a single page load
(the standard in prior work) to this adaptive strategy with
varying values of δ. This table presents the results for a
UserAgent string purporting to be a Desktop client. In the
case of a Mobile client, the percentages of domains, edges, and
resources are nearly the same, but Mobile tends to require

Total # Avg. % Avg. % Avg. %
Strategy Loads Domains Edges Resources
1 load (prior work) 982 76.4 73.0 24.7
Adaptive, δ = 1 9781 95.2 93.4 51.5
Adaptive, δ = 3 12,515 97.6 96.5 59.0
Adaptive, δ = 5 14,357 98.1 97.2 63.8
Adaptive, δ = 10 18,958 98.9 98.3 75.5
30 loads (all) 29,460 100 100 100

TABLE III: Requisite page loads and amount of content
received for different download strategies, when run against
the 982 of the Alexa top-1000 websites that responded with a
Desktop UserAgent.

0 10 20 30 40 50 60 70 80 90 100

% extra domains obtained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f 
W

e
b
p
a
g
e
s

ZBrowse More Popular Websites

ZBrowse Less Popular Websites

Crawlium More Popular Websites

Crawlium Less Popular Websites

(a) Domains.

0 10 20 30 40 50 60 70 80 90 100

% extra data obtained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f 
W

e
b
p
a
g
e
s

Edges More Popular Websites

Edges Less Popular Websites

Resources More Popular Websites

Resources Less Popular Websites

(b) Edges and Resources.

Fig. 7: Percentage of domains obtained by Crawlium and
ZBrowse, and percentage of edges and resources obtained by
ZBrowse in subsequent page loads for the Alexa top-10k sites
and 10k sites from among Alexa rank 10,001 to 1 million
using Desktop UserAgent string.

roughly 1000 fewer page loads for each of the Adaptive
strategies.

These results show that the standard approach of performing
a single page load fails to obtain on average 23.6% of the
domain names and 27.0% of the edges in webpages’ inclusion
graphs. Our adaptive strategy is able to obtain significantly
more content without having to exhaustively download the full
30 times. For instance, with 42.5% of the maximum number
of page loads, the adaptive strategy with δ = 3 misses only
2.4% of the domains and 3.5% of the edges, on average. There
are diminishing returns for higher values of δ.

How much data comes after the first page load? Figure 7
shows the percent of new data (domains, edges and resources)
obtained after the first page load using adaptive strategy with



δ = 3 for Alexa top-10k sites and randomly selected 10k less
popular sites on desktop (the plots for mobile are very similar).
We observe that, compared to less popular websites, more pop-
ular websites obtain more new domains, edges and resources
in subsequent page loads. Also, as shown in Figure 7(a) ,
ZBrowse obtains more new domains in subsequent page loads
than Crawlium. Figure 7(b) shows the percentage of new
edges and resources obtained using ZBrowse (the results were
nearly identical for Crawlium).

How many page loads were needed in the rest of our
study? Figure 8 shows the distribution of the number of page
loads when using the adaptive strategy with δ = 3 across
websites we used in Sections III and IV. The majority of
websites required four total downloads (meaning all of their
content was obtainable in one); and there is a long tail. Only a
small fraction require the maximum of 30 page loads—these
are likely websites with so much dynamic content that they
can never obtain a full snapshot of their content at any one
point in time. We note also that Mobile versions of websites
required slightly fewer page loads than their Desktop versions.
Interestingly, less popular websites required fewer page loads
across both Desktop and Mobile versions.

Collectively, these results shows that there is a wide vari-
ance in webpages’ dynamism and complexity, and motivates
moving away from one-size-fits-all approaches to measuring
them.

Our adaptive strategy incurs significantly higher overhead
compared to the standard single page load—even with δ = 3,
it requires nearly 12× page loads on average. One possible
area for improvement would be to adaptively load not until
there are no more changes (as we have done), but rather until
the changes are below some threshold fraction of all of the
content received thus far.

D. Recommendations

Based on the above results, we make the following recom-
mendations:

Load webpages more than once. Almost all webpages today
have too much dynamism to get a significantly complete
inclusion graph from a single page load.

Avoid one-size-fits-all solutions. There is simply too much
variability across webpages in terms of the number of page
loads required to obtain a given percentage of their resources.
Prefer reload strategies tailored to specific webpages. Barring
any prior knowledge of a webpage, one can apply adaptive
techniques like the one we have presented.

VI. CONCLUSION

Downloading accurate and complete inclusion graphs of
webpages is an important building block towards understand-
ing myriad phenomena such as advertising [9], malicious
inclusions [8, 2, 15], and performance optimizations [13].
Surprisingly, there is little consistency across various studies
on how to crawl the web, and even sophisticated tools lack
thorough comparisons to one another.
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Fig. 8: Number of page loads for adaptive strategy (δ = 3)

In this paper, we have sought to take the first step towards
an empirical foundation for crawling webpages. To this end,
we compared two state-of-the-art tools, Crawlium [6] and
ZBrowse [18], to understand which tool to use and how
many times to reload a page. We found the tools to be
complementary, and recommend that both tools’ techniques
should be used to download webpages. We also found that
downloading webpages a single time (as is often the case)
misses more than 25% of the domain names from more than
25% of webpages. We recommend an adaptive strategy that
trades off overhead (more page loads) for more coverage.

Our results demonstrate several features that have significant
impact on the inclusion graph (whether the UserAgent string
is that of a mobile or desktop device, how many times the page
is loaded, which events the tools listen for, and so on). Our
hope is that our results will lead to more papers exploring
these various parameters and reporting on them so that others
may evaluate and reproduce more accurately. To assist in
such future efforts, we have made our code and data publicly
available at

https://breakerspace.cs.umd.edu/
web-topology

This work raises no ethical concerns.
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