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Abstract—Web performance researchers have to regularly
choose between synthetic and in-the-wild experiments. In the
one hand, synthetic tests are useful to isolate what needs to
be measured, but lack the realism of real networks, websites,
and server-specific configurations. Even enumerating all these
conditions can be challenging, and no existing tool or testbed
currently allows for this. In this paper, as in life, we argue
that unity makes strength: by sharing part of their experimenting
resources, researchers can naturally build their desired realistic
conditions without compromising on the flexibility of synthetic
tests. We take a step toward realizing this vision with WebTune,
a distributed platform for web measurements. At a high level,
WebTune seamlessly integrates with popular web measurements
tool like Lighthouse and Puppeteer exposing to an experimenter
fine grained control on real networks and servers, as one would
expect in synthetic tests. Under the hood, WebTune serves “Web-
tuned” versions of websites which are cloned and distributed to
a testing network built on resources donated by the community.
We evaluate WebTune with respect to its cloning accuracy and
the complexity of network conditions to be reproduced. Further,
we demonstrate its functioning via a 5-nodes deployment.

Index Terms—Web, performance, testbed

I. INTRODUCTION

The web is a complex ecosystem with wide range of web-
page designs, servers’ and clients’ configurations, and network
settings. Web content is also constantly changing, causing
significant differences among webpage loads. This hetero-
geneity and dynamism are problematic to both researchers
and practitioners as they complicate experimentation and cast
doubts on their conclusions.

Content providers in control of their hosting servers can
explore the effect of different clients’ network configurations
with web performance tools such as WebPageTest [1], Light-
house [2], or Puppeteer [3]. Experimenters comparing the per-
formance of different server configurations, on the other hand,
find themselves between a rock and a hard place. They can use
synthetic webpages on their servers, coming to terms with the
fact that their findings may not apply to real-world webpages,
which are highly heterogeneous. Alternatively, they can opt for
actual webpages and avoid dynamism by recording/replying
web access traces [4], but have to limit themselves to in-
lab/synthetic network conditions.

None of the options available to experimenters today pro-
vides a clear and full picture needed to understand the impact
of real sites configurations on the quality of experience of
their clients, forcing experimenters to choose either realism

or the necessary control to explore, and explain the parameter
space. This frustrating state of affairs motivates the design
of WebTune, a platform that enables experimentation with
real-world webpages under real network conditions, without
the uncertainty of dynamic content and opaque server-side
networking stack.

The goal of WebTune is to reproduce, in a realistic but
controlled environment, the entities involved in a webpage
load. That is, the set of domains/servers responsible for a
webpage are replaced with machines from a testing network
instrumented to serve such domains. To achieve this, WebTune
adopts a cooperative approach where experimenters make
hosting servers with their particular connectivity available in
the testing network. When deploying an experiment, WebTune
selects among the available nodes/servers and instrument them,
e.g., by setting the desired TCP version (e.g., CC algorithms),
to meet an experimenters’ needs.

From an experimenter’s perspective, testing a real or a
“webtuned” page is equivalent. Web performance tools can be
used unmodified by simply prefacing a request to WebTune’s
API describing the experiment, e.g., test example.com while
fully hosted in the US by servers which use the BBR congestion
control (see Figure 3). This request triggers WebTune’s access
server to fully load the desired webpage in Chrome, cache
all HTTP(S) headers and bodies, and distribute them to the
chosen nodes in the testing network which will be serving
them. Finally, the experimenter is provided with a Proxy
Auto-Configuration (PAC) file – generated to reflect the nodes
selection – which steers traffic towards the testing network
transparently, i.e., without any change in both cloned content
and web performance tools.

We evaluate WebTune with respect to the accuracy of web-
page cloning, and the complexity of the networking conditions
that should be reproduced. Out of Alexa’s 100 most popular
wepages (top100, from now on), we find that 80-90% of
pages can be accurately cloned, both in term of their overall
size and Structural SIMilarity (SSIM) when fully loaded by
the Chrome browser. Some webpages are affected by the
presence of dynamic content, which is to be expected and
would cause differences even between two consecutive tests
using the original webpage. A small percentage of webpages
failed during cloning which triggers, for instance, quite visual
404 messages.

With respect to network settings, our results show that a
testing network with 5-10 nodes is enough for the majority978-3-903176-40-9 ©2021 IFIP
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Fig. 1. CDF of percentage of page loads that are “fast”, i.e., within 2.5
seconds, as per Chrome UX Report for Alexa top 100 in desktop and mobile.
This shows web performance varies ever for the most popular webpages.

of the Alexa top100 pages. However, we also find that some
webpages might require tens of nodes to match their more
complex RTT distributions. This further motivates WebTune’s
crowdsourced design, which allows it to scale as more exper-
imenters join. WebTune is open source [5] and can be used
with any testing network, such as lab machines or cloud nodes.

We demonstrate WebTune’s capabilities by exploring two
research questions using, as an example, 5-nodes testing
network composed of a combination of in-lab and AWS
machines. First, we investigate the impact of adding 100%
HTTP/2 support to 30 Alexa top100 webpages. Apart from the
significant benefits, we show how WebTune’s server-side view
allows to further explain the results. Last, we use WebTune
to quantify the benefits of adding CDN support to 15 Alexa
top100 webpages which are still self-hosted.

II. WEB MEASUREMENT HAZARDS

Background: Webpages are increasing in complexity, contain-
ing hundreds of elements hosted on a variety of domains and
servers. Clients’ network conditions and devices are also in-
creasingly heterogeneous, with a myriad of new devices being
released every year while legacy devices are still operational.
Such diversity is a key reason for the significant performance
differences we all experience as users.

Figure 1 quantifies these differences focusing on Alexa
top100 sites (most popular in the US) plotting the Cumulative
Distribution Function (CDF) of percentage of page loads that
are fast, i.e., within 2.5 seconds as measured by the millions
of Google Chrome users in the wild and published in the
Chrome User Experience Report (CRuX) [6]. We find that
only 20 webpages, out of the top100, have consistently good
load times on desktop (at least 75% of page loads). Given the
expected differences for mobile clients, we plot these pages’
metrics separately (dashed line). In this case, the number of
pages with consistently good load times drops to just 13 (out of
the top 100), even considering mobile-specialised pages, e.g.,
where client is redirected to m. subdomains. Such wide range
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Fig. 2. Traffic contribution per TCP congestion control, as identified by
Gordon [7] for Alexa top 100 webpages. In addition to the complex mix of
congestion control, its unknown portion makes web performance measurement
more opaque and challenging.

of performance even for the most popular (and thus one would
assume better tuned) webpages emphasises the challenges of
measuring and tuning web performance.

Server-Side Opaqueness: There has been many efforts by
private companies and researchers to build tools to accu-
rately measure a webpage performance; Puppeteer [3] and
Lighthouse [2] are two popular tools for Chromium-based
browsers, WebPageTest [1] offers cloud-based tests, and Web
Page Replay [8] and Mahimahi [4] focus on recording and
replaying HTTP traffic to reproduce network communications.

These tools provide detailed client-side view, but no vis-
ibility on the server-side. Researchers often face an opaque
server-side networking stack when measuring webpages in
the wild. This complicates experimental analysis as there
is a cornucopia of possible server configurations that could
impact measurement results. Here we outline a small subset
to highlight the difficulties faced by researchers.

TCP Congestion Control: While TCP CUBIC is widely
used in the web, whether the server uses TCP HyStart or
SlowStart can lead to significant changes in a webpage’s per-
formance [9]. Additionally, emerging TCP congestion control
protocols, such as BBR [10], utilize a delay-based approach
which can also lead to different performance results [11].
Understanding which congestion control algorithm a remote
server deploys is an active research area which has led to
several projects [7], [11], [12].

Figure 2 illustrate the diversity of TCP congestion control
algorithms in the wild, showing the percentage of traffic
carried by each congestion control algorithm involved in a Web
page load, focusing on Alexa top 100 [13] sites. To obtained
this figure, we paired Lighthouse with Gordon [7], a recent
client-side tool for remote TCP version fingerprinting. The
figure shows a complex mix of congestion control algorithms,
each of which would interact differently with the performance
measurement and the network conditions considered. More im-



portantly, the amount of unknown (gray barplots) is impressive.
This happens because fingerprinting TCP congestion control
in the wild is hard and very much dependent on the size of
the available content [7], [11]. In other words, even the best-
prepared researchers lack the tools to gain full visibility on
their experiments.

HTTP/2 Prioritization Implementation: Each browser uses
a slightly different prioritization scheme when requesting
web objects. Further, HTTP/2 lets a server decide how to
handle requests [14]. Given this freedom, not all servers
support prioritization or they completely ignore the client-side
hints [15]. This is frustrating for researchers measuring the
performance of HTTP protocol versions in-the-wild and can
lead to inconsistent results.

Server Load-Balancing: When the goal is to measure the
performance of web content or protocols, a major roadblock
is server-side stack configurations, especially load-balancing.
It is possible to load the same webpage multiple times and
be served by different machines. The only countermeasure is
DNS prefetching, i.e., pre-loading the testing machine with
the DNS entries to be used in a test to ensure that at least,
successive tests will contact the same set of IP addresses.
Unfortunately, this approach does not help in presence of IP
anycast, a popular solution adopted by some Content Delivery
Networks (CDNs) to pair content requests to a near-by cache.

III. WEBTUNE DESIGN

In this section, we outline the design and functioning of
WebTune. WebTune focuses on providing the best possible
testing conditions for web performance research. To this end,
WebTune must ensure (i) that the content served remains
constant across runs such that content variability is no longer
an uncontrolled variable, (ii) require no modification of to-
day’s web performance tools, (iii) provide the whole picture
to users, with information from both client and server sides,
and finally, (iv) ensure that the content served is as close as
possible to the base webpage, so performance metrics for both
versions remain within normal bounds.

Figure 3 shows a visual representation of WebTune. At a
high level, it consists of three main components: experimenter,
access server, and testing network. The experimenter (client) is
a member of WebTune which runs any web measurement tool
as described in Sec. II. The web measurement is equivalent
to today’s measurements with the caveat that the experimenter
can further specify server-side configurations via WebTune’s
API. This can be easily paired, for instance, with Lighthouse as
shown in Fig. 3. The access server is responsible for managing
both testing network and undergoing experiments. The testing
network is the ensemble of resources donated by experimenters
which are used to serve cloned copies of real webpages to
experimenters.

A. Testing Network

WebTune’s testing network consists of resources donated
by a community of Web experimenters. This is motivated by

URL: example.com
HTTP: [H1]
TCP: [BBR]
RTT: [50-100ms]
Region: [US]
Duration: 30mins
...
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Fig. 3. Visual representation of WebTune and its workflow. First, an
experimenter requests to test example.com over HTTP/1.1 and BBR as a
transport; nodes should be in the US, with latency comprised between 50
and 100ms (1). The access server scrubs example.com for its content (2),
which it then shares with serving nodes from the testing network selected
given an experiment requirements (3). Next, it generates a PAC file reflecting
the node selection (4). Finally, it returns to the client the PAC file it should use
for this test (5). Consulting with the PAC file (6), a classic web experiment
is then conducted (7) using, for example, Lighthouse [2].

the fact that, given the size and diversity of the Web, it is
quite challenging (and expensive) to build a centralized archi-
tecture or to make a single emulated machine handle requests
from the multiple clients to many more servers. Instead, a
distributed approach can rely on the natural diversity of the
connectivity offered by experimenters. However, WebTune is
open source [5] and can thus be used with any testing network,
such as a collection of cloud servers.

Researchers interested in joining WebTune donate a spare
machine of their lab resources where to run WebTune’s node
code (see below). There are only three requirements to be
met. First, the selected machine should be publicly reachable
from the outside world on a configurable port which will be
used to serve content over HTTPS. Second, the researcher
must grant ssh access to WebTune’s access server (via pubkey
only). Last, the machine should run Docker [16], the OS-level
virtualization we have chosen for our testing node. Docker was
chosen because of it is well-known, portable, easy to deploy,
and offers high performance.

WebTune’s Docker image is based on a minimal Ubuntu
equipped with common Linux utilities such as tc [17] to allow
control on available bandwidth, and (extra) network latency or
losses. The image also comes with a MySQL database where to
store cloned versions of webpages, and mitmproxy to serve
such cloned content, as we will discuss later. Finally, the image
includes WebTune-specific code needed for communication
with the access server and to maintain up-to-date informa-
tion about the rest of the testing network. According to the
experiment needs, a node’s TCP stack (e.g., TCP version and
parametrization) can also be customized. Given that Docker
relies on the host kernel, such configurations apply to the
whole machine.

Each testing node also maintains an RTT table reporting



Parameter Description Values

HTTP Version of HTTP HTTP/1.1, HTTP/2,
HTTP/3, QUIC

TCP TCP congestion control
and settable features.

Cubic, BBR, Yeah,
Hybrid slow start, etc.

Regions Geographical locations
of preferred testing nodes Europe, US, ITA, etc.

Delay
RTT distribution

between experimenter
and testing nodes

Min/max RTT

Bandwidth
Bandwidth distribution
between experimenter

and testing nodes
Min/max bandwidth

TABLE I
WEBTUNE’S PARAMETERS DESCRIPTION.

on measured RTT between itself and the rest of the network.
Further, it maintains fresh information about its available
bandwidth obtained via the Speedtest CLI [18]. The RTT table
and the upload bandwidth are shared with the access server
and used when deciding which node to associate with a target
domain.

Last but not least, testing nodes can be instrumented to
collect TCP logs (e.g., via Linux socket statistics [19]) which
allow to combine the client-side view, e.g., performance
metrics like SpeedIndex [20], with the server side view,
e.g., evolution over time of the congestion control window
(see Fig. 8). This greatly improves an experimenter visibility
in the set of conditions which can determine the outcome
of an experiment, helping untangling the intricacy of web
performance measurements we discussed in Sec. II.

B. Access Server

The main role of the access server is to manage WebTune’s
testing network and enable experiments. We built it atop of the
Jenkins continuous integration system [21] since it offers many
of the functionalities we need. First, it manages access control,
e.g., ssh key management, to the testing network. Second, it
keeps up-to-date statistics, e.g., RTT and availability, for each
testing node. Third, it handles end-to-end test pipelines while
supporting multiple users and concurrent timed sessions.

WebTune’s access server runs in the cloud (Amazon Web
Services). Nodes from the testing network are added by
WebTune’s system administrator via IP lockdown and security
groups. Ssh is used to allow the access server to communicate
with a node via public key and IP white-listing, which are
configured at a node during registration.

In the following, we discuss more key features of Web-
Tune’s access server.

Restful API: WebTune offers restful APIs which an
experimenter can use to request a detailed configuration of the
servers (testing nodes) responsible of a “Webtuned” webpage.
This boils down to a JSON object, as shown in Fig. 3,
{“URL”:“example.com”, “HTTP”:“H1”, “TCP”:,
“BBR”, “RTT”:“50-100ms”, “Location”:“US”,
“Duration”:“30mins”}, which indicates an
experimenter aims to study the performance of example.com
while served using HTTP/1.1 and BBR as HTTP and TCP
algorithms, from servers located in the US and with RTT

between 50-100ms range, between experimenter and testing
nodes.

Once a request as the above is received, the webtuning
of a webpage starts. This consists of generating a cloned
version of the page, which is then distributed in the testing
network to meet the experimenter requirements. Finally, the
access server informs the client that the webpage has been
webtuned and “how” to reach it. As we will discuss later, this
is as simple as pointing the testing device to a remote Proxy
Auto-Configuration (PAC) file – located at the access server –
generated for this experiment.

Webpage Cloning: A “Webtuned” page is a cloned webpage
served by multiple nodes from the testing network. There are
several tools for cloning a webpage (e.g., wget, puppeteer,
mitmproxy). We have evaluated those tools and found each
of them to present different issues, such as lack of mainte-
nance for WprGo, low accuracy for wget, and engineering
requirements to adapt to our tool (Mahimahi), that would
require significant dedication to improve the cloning result. We
investigate Web Page Replay (WprGo, part of catapult [8]),
wget [22], and two scrapers built on Puppeteer [3]. WprGo
returns a pointer-related error even on their example (with an
associated open issue) and it is not well maintained anymore.
The other tools work – although wget requires careful setup1

– but, overall, miss more content than the solution we have
adopted which we will describe shortly. Mahimahi’s Web
replay is a potential candidate, but it requires engineering work
to untangle the record/replay operations and adapt them to
WebTune.

The solution we have adopted combines a real browser
(Chrome) with a man-in-the-middle proxy (mitmproxy [23]).
The usage of an actual browser ensures all network requests
associated with a page are executed. Mitmproxy intercepts
these requests – even HTTPS with the setup of a root CA at
the testing client – and fetches their associated content while
making a local copy for future requests. We wrote a python
script for mitmproxy which checks each requested content for
availability in a local database (clone). If available, the content
is loaded (both header and actual content), compressed, and
returned. Otherwise, the request is forwarded to the original
source. The response is then intercepted, appropriately stored
in a database, and forwarded back to the client. If a webpage
utilizes domain sharding [24], i.e., embedded web objects
are distributed across multiple (sub)domain names, the (by
default) independent sharded subdomains are distributed to
different testing nodes. An experimenter can also request
test un-sharded version of the same page, where sharded
subdomains are coalesced – as currently done by HTTP/2 [25].

Webpage cloning can also be delegated to an experimenter.
This is useful for two reasons: to reduces the load on the
access server, and when needed to estimate the RTT between
experimenter and the domains used by a webpage under test.
This might be required when an experimenter’s goal is to test a

1Several uncommon wget’s basic flags are essential to comprehensively
clone a webpage: –span-hosts, –convert-links, –random-wait



webpage over WebTune under the same network conditions as
its original counterpart but, for instance, different TCP flavors.
An experiment might run this test independently and then use
WebTune’s API to enforce the desired RTT conditions.

Nodes Selection: Testing nodes are selected based on the
intersection of user needs, e.g., only nodes in the US, and
particular nodes status such as reachability and conflicting
experiment status. For example, if a node is involved in a test
while using bbr congestion control, it cannot also be used in
a test requesting cubic.

RTT is a key feature among the other criteria in the node
selection – given a target RTT for a domain, only certain nodes
can be considered as candidates for serving a domain. Under
the assumption that an experimenter is also co-located with a
node from the testing network, its RTT table – periodically
returned to the access server – contains all the information
needed for this selection. Using information from the RTT
table, the access server identifies nodes in the testing network
whose RTT closest to that of the domains to be tested.

Once the node selection is concluded, the cloned content
of a webpage is distributed to the selected testing nodes and
stored appropriately in their databases. Each node also runs
mitmproxy to eventually serve cloned content. Finally, a PAC
file is generated to reflect the node selection, i.e., inform
the experimenter which mitmproxy to use for each domain
involved in the webpage under test. This allows transparent
experimenting without any changes in both cloned content,
e.g., URL rewriting, and testing code.

C. Experimenter

Last but not least, an experimenter is needed to per-
form actual web experiments with WebTune. There is no
restriction on the experimenter type, i.e., desktop or mobile
as well as a commercial browser or some research Python
code. The only requirements are: 1) use WebTune APIs
to prepare an experiment, 2) speak HTTP(S), 3) setup the
device with the PAC file produced by the server for this
test. In presence of HTTPS, WebTune’s root CA should
be installed on the testing device. Alternatively, the client
can be setup to ignore certificate errors, e.g., using flag
-ignore-urlfetcher-cert-requests in Chrome.

IV. EVALUATION

In the following paragraphs, we present results from an
evaluation of WebTune. We start by analyzing the accuracy
of webpage cloning, and the complexity of the networking
conditions that WebTune should aim at reproducing. Next, we
show how WebTune can be beneficial for Web performance
research.

A. Cloning Accuracy

We integrate cloning and testing in a single tool. Given
an input webpage, the tool loads it via Lighthouse while
collecting devtools [26] data such as size of the objects
retrieved during a load. Meanwhile, it triggers the cloning
procedure to generate the Webtuned version of the webpage
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Fig. 4. CDF of bytes ratio (cloned/original). For 55% of pages, the cloned
and original versions are very similar in size, with a ratio in [0.9, 1.1].
The differences presented by the top 5% pages with larger cloned pages
than the respective original and the other 20% with a ratio in [0.8, 0.9] are
predominantly due to dynamic content.

under test, for now using a single node hosted at our premises.
Next, Lighthouse is instrumented to load the newly created
Webtuned webpage. We run this experiment for Alexa top-
100 pages using Chrome.

Figure 4 shows the CDF of bytes ratio across Alexa top 100
webpages, i.e., the ratio between the bytes received during the
load of the cloned and the original webpages, respectively. The
figure shows that for 55% of the pages, the cloned and original
versions are very similar in size, with a size ratio between 0.9
and 1.1. About 5% of the cloned pages are bigger than the
original. This is due to differences between the original and
cloned pages due to dynamic content and potentially slightly
difference (gzip) compression. This is not unexpected given
the hazards of web measurements; even reloading the same
original webpage multiple times would produce a page with
slightly different sizes each time. Next, 20% of the pages have
a ratio between 0.8 and 0.9; while both versions are still quite
similar, the smaller cloned versions are due to the presence of
dynamic content and other errors, as we discuss in the next
paragraphs.

Next, we focus on the appearance of a cloned webpage
or how similar it looks to the original one. We compute the
Structural SIMilarity (SSIM) index – a method for measuring
the similarity between two images – between screenshots
obtained post the onLoad event, i.e., when the page is
considered fully loaded by the browser.2 Figure 5 shows
the CDF of the SSIM index for Alexa top 100 pages: 0
means completely different pages and 1 equal pages. The
figure shows a SSIM higher than 0.95 for about 60% of the
webpages. These are webpages where cloning works perfectly
and only very minor differences exist. Next, 30% of the pages
have an SSIM between 0.6 and 0.95; in these cases, we can

2The webpage similarity can be computed considering either their structure
(generally static) or aesthetics (can be more dynamic). Our cloning copies the
structure fairly accurately in general, but cloning the "look" is much more
challenging. Therefore we chose SSIM as a similarity metric.
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Fig. 5. CDF of SSIM index between cloned and real webpages. About 60%
of pages have a SSIM higher than 0.95.

(a) A-original (b) A-clone

(c) B-original (d) B-clone

Fig. 6. Examples of challenging pages. SSIM is 0.31 for A, due to a 404
result that alters the page appearance, and 0.50 for B due to the change of
background image.

observe slightly higher differences caused by things like image
compression or position of warnings (e.g., cookies accepts
or privacy consent), however the overall appearance of the
webpages was intact.

The bottom 10% of webpages show significant difference
(SSIM<0.6), highlighting a need to improve our cloning tool.
Fig. 6 shows examples of two webpages (original on the
left and cloned on the right). For the case A, for which we
measured a SSIM of 0.31, some contents are missing causing
a 404 which dramatically modifies the page appearance, yield
such low SSIM. The case B (SSIM 0.50) is different as both
the original and the cloned webpages are correctly displayed,
but the original server serves different content (the background
image in this case) for each access. In future work we plan
to improve WebTune to address these two problematic cases,
as they are the main responsible for low SSIMs in our
measurement.

Fig. 7. Boxplots of latency distribution per Alexa top 100 ordered by
rank. The inserted plot shows the CDF of the number of unique IPs per
webpage load. These two results suggest the number testing nodes necessary
to reproduce a pageload with varied delays.

Node Distribution with RTT: Figure 7 reports both on
the RTT distribution (one boxplot per webpage) and number
of IPs involved in these experiments. Intuitively, both RTT
and number of IPs are good indicators of the footprint that
WebTune should target. For example, the figure shows that 5
WebTune nodes can cover 50% of Alexa top 100 webpages,
and 15 WebTune nodes are required to serve all the pages
we tested. Further, the measured RTTs vary between few
milliseconds up to even half a second, in few cases. This
result reinforces our motivation of WebTune ’s crowdsourced
design for the testing network, which allows to reproduce such
complex mix of network conditions from which experimenter
would be able to chose. Having more participants in the testing
network should result on a wider range of RTTs and more
accurate node selection.

B. Applications

In this subsection, we demonstrate WebTune’s functioning
using two example applications: upgrading to HTTP/2, and
adopting CDN. These are illustrative examples with the goal to
showcase WebTune’s versatility as a tool for web performance
research; we acknowledge that the above research questions
are complex and their thorough exploration is beyond the aim
of this work.

For these experiments, we use a testing network formed by 5
WebTune proxies (both in-lab machines and AWS instances),
which could cover >50% of Alexa top 100 pages in Sec. IV-A,
grouping domains to each proxy based on RTT information
(unless otherwise noted) in the attempt to reproduce similar
network conditions as the one measured towards the original
domains used by a webpage. The testing client is a legacy
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Fig. 8. Using WebTune to investigate potential benefits of upgrading HTTP/1.1 to HTTP/2.

Chrome browser instrumented by Lighthouse [2] running on
a desktop machine (macOS) connected over a 100 Mbps fiber
connection (both in downlink and uplink).

HTTP/2 Upgrade: Several studies have investigated the per-
formance benefits (or penalties) of HTTP evolution, especially
when HTTP/2 was standardized back in 2014/2015 [27]–[30].
One common approach consists in instrumenting Chrome to
turn on/off HTTP/2, and compare performance using metrics
like SpeedIndex or PageLoadTime. This is because,
without browser modifications as in Agarwal et al. [11], the
browser does not allow to disable HTTP/2 just for one domain.
Also, if the remote server responsible for a domain does not
support HTTP/2, the client can not force it to switch.

WebTune allows fine-grained control on which specific
HTTP version is supported at the server (proxy) responsible
for a domain. We have identified 30 domains from Alexa top
100 with partial HTTP/2 support, and studied the performance
impact of a 100% HTTP/2 support using WebTune. Figure 8(a)
shows the performance delta using the three most popu-
lar metrics, FirstMeaningfulPaint, SpeedIndex, and
PageLoadTime, as reported by Lighthouse. The delta of
each metric is computed between testing the original page
in WebTune, same amount of HTTP/1.1 and HTTP/2 as in
the original page, and a page with 100% HTTP/2 support.
It follows that values smaller/larger than zero indicate a
performance penalty/improvement.

Figure 8(a) shows that, regardless of the metric, a full
switch to HTTP/2 offers performance benefits to 80-90%
of the webpages. The impact is more prominent on “later”
metrics, i.e., metrics which are triggered later in time during
the page load, such as SpeedIndex and PageLoadTime,
with median benefits of up to 90ms. Note that these results
refer to a single network conditions (fast fiber), and might not
extend to other conditions like “jittery” mobile networks [11],
[31]. Again, our goal is to showcase WebTune flexibility rather
than a thorough exploration of this specific research question.

Following up with our goal, Fig. 8(b) and 8(c) demonstrate
the level of visibility achieved by WebTune. Each figure
plots the evolution over time of the cwnd (server-side) when

serving a webpage hosted on a single domain using HTTP/1.1
and HTTP/2, respectively. Each line in each plot refers to a
different TCP connection (identified by src ip and port of the
testing client); the plot further shows as vertical lines each per-
formance metric collected by lighthouse, e.g., SpeedIndex
labelled as SI. We chose a webpage hosted on a single domain
for increased visibility.

The figures visualize one key novelty of HTTP/2: the
usage of a single connection, versus 6 connections used by
HTTP/1.1 (at least in Chrome). Note that the second short
lived connection shown in Figure 8(c) is just a trick Chrome
uses to speedup connection setup. The plots show typical
TCP cubic (default in the Linux kernel) behaviors: rapidly
growing the cwnd until a loss is detected, followed by a slower
increase in the attempt to avoid congestion. Note that the
cwnd is (mostly) flat towards the end of each plot because the
server has no data to send, e.g., because the browser is “stuck”
parsing and rendering with no new content requested. These
plots show a scenario where HTTP/1.1 manages to be overall
competitive: slower FirstMeaningfulPaint but faster
SpeedIndex – which is the metric better representing user
experience – and equivalent PageLoadTime. Although not
shown due to space limitations, the explanation of the slower
FirstMeaningfulPaint with HTTP/1.1 derives from the
time spent in setting up the 6 TCP connections along with TLS
(a fresh visit was considered, i.e., no session resumption was
used in this example). With respect to SpeedIndex, Fig. 8(c)
shows that an additional loss is responsible for the slower
SpeedIndex in case of HTTP/2. This is a probabilistic
event rather than a protocol difference, thus suggesting a
potential outlier. This showcases the importance of full-stack
(both client and server) visibility offered by WebTune to fully
understand Web performance experiments.

CDN Adoption: Next, we use WebTune to quantify the ben-
efits of adding a CDN to CDN-less webpages, i.e., webpages
which are still self-hosted. We have identified 15 webpages
from Alexa top100 which are CDN-less by analyzing the hosts
of the requests, and we tested them for potential performance
improvements when adding a CDN. To do so, we test the
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Fig. 9. Using WebTune to quantify the performance benefit (in delta)
introducing CDN.

original webpage in WebTune by mapping their domains to
our available proxies with most similar RTTs. Next, we run a
second test where we make sure a maximum RTT of 15 ms is
used, similar to what achieved by most CDNs today [32]. To
achieve this, we deployed multiple proxies in our LAN and
used Linux tc to add some artificial delay.

Figure 9 shows the performance delta from introducing a
CDN in these webpages. In this case all webpages benefit
from increased performance by adopting a CDN. Further,
performance improvements are significant, e.g., a median of
half second when considering SpeedIndex.

V. RELATED WORK

A number of efforts from both industry and academia aimed
at improving web performance has yielded several perfor-
mance measurement tools. Puppeteer [3] and Lighthouse [2]
load webpages and report on their performance across a large
set of metrics in Chromium-based browsers. WebPageTest [1]
further provides cloud-based tests which allows webpage per-
formance tests from a variety of different devices and network
locations. Tools such as Web Page Replay [8] or Mahimahi [4]
allow to record and replay HTTP traffic over a local testbed
using network emulation to reproduce a single (Web Page
Replay) or multiple (Mahimahi) domains. WebTune is sim-
ilar in spirit to Mahimahi, but that brings the fundamental
innovation to achieve a similar outcome over a real network.
This is key given that recent work has demonstrated that
network emulation, even via accurate traces, can be far from
reality [33].

Although different, these tools share a common limitation:
lack of server-side visibility. This limits an experimenter’s un-
derstanding of web performance tests to information gleaned
from the client-side. Unless we are a content provider, the only
way to gather server-side data is to independently create and
host web content, often synthetic, to measure. Having only
half of the picture can be catastrophic to the understanding of
performance and why a webpage loaded the way it did.

VI. CONCLUSION AND FUTURE WORK

The wide range of webpage designs, network settings, client
and server configurations, complicates Web measurements.
Further, the constantly changing web content renders these
measurements often inconsistent. This heterogeneity and dy-
namism are a challenge for experimenters as they complicate
evaluations and cast doubts in their conclusions. Our proposal
to this problem is WebTune, a distributed platform for Web
performance measurements that (i) seamlessly integrates with
existing web measurement tools, and (ii) allows fine grained
control on real networks and servers. In practice, webpages
are “Webtuned” or cloned and distributed to a testing network
which is instrumented as per an experimenter need, e.g., TCP
stack and network delay.

We have developed and open sourced WebTune [5]. We
presented evaluation results on the accuracy of webpages clon-
ning and estimates of the scale of the testing network needed
to achieve realistic testing conditions. We find that WebTune
achieves high accuracy, e.g., accurately cloning 80-90% of
Alexa’s top 100 webpages, and can handle most webpages
with a testing network composed of 5-10 nodes. Finally, we
demonstrated WebTune capabilities while investigating two
illustrative research questions with a 5-nodes deployment.

As part of future work we plan to improve webpage cloning
to eliminate some of the issues we have identified and make
it more consistent. In particular, resolving 404 error and
dynamic contents in the same page would be important to
increase accuracy. We also plan to work on avoiding cloning
of illicit contents, as it can put researchers/resource host
under risk. More importantly, we plan to build a community
around WebTune. We will bootstrap the testing network using
machines at our premises and colleagues’ who have already
shown interest in WebTune.
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