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Abstract—
Internet-of-Things (IoT) devices are known to be the source of

many security problems, and as such, they would greatly benefit
from automated management. This requires robustly identifying
devices so that appropriate network security policies can be
applied. We address this challenge by exploring how to accurately
identify IoT devices based on their network behavior, while
leveraging approaches previously proposed by other researchers.

We compare the accuracy of four different previously proposed
machine learning models (tree-based and neural network-based)
for identifying IoT devices. We use packet trace data collected
over a period of six months from a large IoT test-bed. We show
that, while all models achieve high accuracy when evaluated on
the same dataset as they were trained on, their accuracy degrades
over time, when evaluated on data collected outside the training
set. We show that on average the models’ accuracy degrades after
a couple of weeks by up to 40 percentage points (on average
between 12 and 21 percentage points). We argue that, in order
to keep the models’ accuracy at a high level, these need to be
continuously updated.

Index Terms—IoT, network traffic, machine learning, random
forests, neural networks

I. INTRODUCTION

Internet-of-Things (IoT) devices are the source of many
security threats, particularly in domestic deployments [1].
To counter such threats, these devices would benefit from
active and, in particular, automated management. However,
automating such tasks requires robustly identifying devices to
be able to apply appropriate policies, actions, and updates. In
this environment, the natural way of identifying IoT devices
is to analyze their network behavior at the home router:
devices cannot hide behavior as, by definition, they must
interact over the network in order to provide functionality.
Performing analyses of network behavior at the home router
is robust in terms of privacy, scalability and not relying
on dependencies from manufacturer-provided cloud-services.
Furthermore, there is already nascent support for summarizing
such analyses’ results via the MUD standard [2].

Previous work has resorted to machine learning to carry out
IoT device identification. The usual approach entails training
machine learning models offline or in a cloud environment [3]–
[6], and run inference to identify the devices at the home
routers. However, the training and validation of these models

is done on a particular set of devices, and for a limited time
period, thus achieving high accuracy. These models’ accuracy
may drop when evaluated on different IoT datasets or require
continuous retraining to maintain the level of accuracy needed.

To investigate it in more detail, we evaluate three IoT device
identification approaches from the literature on the same
dataset: (i) a two-stage Random Forest classifier using features
extracted from a 1 hour window of collected traffic [5], (ii) a
2D Convolutional Neural Network on a stream of raw packets
[7], [8]; and (iii) Random Forest and Decision Tree classifiers
on features extracted from 1 second window of network traffic
[9]. We also propose new IoT device classification models,
a Random Forest classifier and a Fully Connected Neural
Network trained on features extracted from TCP/UDP flows.
We evaluate in total six algorithms using four sets of features.
We train and evaluate them on a 27 week-long dataset that
we gathered from a large IoT test-bed comprising 41 IoT
devices, split into three time periods for training, while the
evaluation was done on the whole period. We show that IoT
device identification models have high accuracy only when
the training and inference is run on the same dataset. Our
findings prove that static, pre-trained models cannot be used
for identification across different home IoT networks while
ensuring high accuracy. Thus, we conclude that it is paramount
to update the models at the edge with new incoming data.

The main contributions of the paper are as follows:

• We gather a large measurement dataset of 27 weeks from
a large IoT test-bed containing 41 IoT devices.

• We study and compare six different machine learning
models for IoT device classification in terms of their
accuracy using the dataset for training and inference.

• We show that in all six cases the accuracy decays over
time, demonstrating the need for updating models at the
edge.

• We release the extracted features (pre-processed IoT data)
used to train the machine learning algorithms in order to
further research in this area in the community1.

1https://github.com/DADABox/revisiting-iot-device-identification978-3-903176-40-9 ©2021 Crown
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II. RELATED WORK

In the last decades, a vast number of machine learning-
based network monitoring and Internet traffic classification
techniques, both in a distributed and centralized manner,
have been explored [10]–[12]. However, not all methods are
suitable for IoT, and some of these techniques are adopted and
customized for IoT; therefore, in this section, we focus only
on techniques used for analyzing IoT traffic.

Traffic Classification for IoT. Offline IoT network traffic
analysis is used for understanding various IoT device or user
behaviors [13]–[15]. For example, Yadav et al. [16] studied
traffic from a dozen IoT devices in a lab environment to
understand network service (e.g., DNS, NTP) dependencies
and robustness of device function when connectivity is dis-
rupted. Apthorpe et al. [14] analyzed the traffic rates of four
IoT devices, showing that observations about user behavior
can be inferred even from encrypted traffic. Similarly, traffic
categorization using both statistical and machine learning
techniques has been performed by Amar et al. [17].

Device Identification and Anomaly detection in IoT.
The IoT device identification is the first step towards finding
any malicious or unknown IoT device in the network. Gen-
erally, many IoT devices have a unique identifier assigned
during manufacturing such as MAC address or hardware
serial numbers. Even though these unique addresses could
reveal some information about the device manufacturer, still
the full identification of malicious/abnormal devices in the
network using only these unique addresses is not possible.
Thus, behavior-based IoT device identification methods, which
use traffic classification mechanisms have gained attention
recently [3], [4], [18]–[20]. The IoT applications, e.g., anomaly
detection and prediction, require low latency and privacy at the
edge, and traffic based behavior identification is needed to be
done in the real-time at the gateway level for security and data
privacy purpose [21]–[23].

Machine Learning for Device Identification. Machine
Learning in IoT at the edge is still in its infancy, due to partly
lack of available network data in the wild and lack of compact
machine learning models. The recent uptake in resource-
constrained machine learning [24]–[27] has led to a renewed
interest in applying machine learning to IoT network-related
problems, specifically network traffic classification [28]–[30],
anomaly detection [27], [31] and device identification [3]–
[5], [18], [32]. Sivanathan et al. [5] used multi-stage classi-
fiers (Naive Bayes Multinomial and Random Forest Classifier
(RFC)) for IoT device classification and achieved accuracy
from 99.28% to 99.76% with classifiers trained on 1 to 16 days
data from 28 unique IoT devices. The high accuracy achieved
by this algorithm makes it the first choice for evaluation in
our work.

Nguyen et al. [31] trained Gated Recurrent Network (GRU)
for federated learning for anomaly detection using 33 devices
categorized in 27 categories and for evaluation, deployed 13
devices and found only 5 are vulnerable to the Mirai attack
when the attack is injected in the local network. The attack was

TABLE I: Categorized IoT devices in our test-bed.

Category Device Name

Surveillance

Blink camera, Bosiwo camera, D-link camera,
Reolink camera Ring doorbell, UBell doorbell,
Wansview camera, Yi camera, LeFun camera,
ICSee doorbell

Media Apple TV, Fire TV, Roku TV, LG TV, Samsung
TV

Audio Allure speaker, Echodot, Echospot, Echoplus,
Google home

Hub
Insteon hub, Lightify hub, Philips hub,
Smartthings hub, Xiaomi hub, Switchbot hub,
Blink security hub

Appliance Smart Kettle, Smarter coffee machine, Sousvide
cooker, Xiaomi rice cooker

Home automation

Honeywell thermostat, Nest thermostat, Netatmo
weather station, TP-link bulb, TP-link plug,
Wemo plug, Xiaomi plug, Smartlife remote,
Smartlife bulb, Meross door opener

detected within 30 minutes. Many identification works train
machine learning models offline or in a cloud environment [3]–
[6] and run inference to identify IoT devices on local gateways.
The training and evaluation is done only for a set of devices
for a limited time period, thus inference achieves a good
accuracy when testing data is similar to the training data.
However, for real world scenarios, a pre-trained model on
a small set of devices would not work on a large set of
unknown IoT devices. The identification accuracy may drop
when the inference data is different from the training dataset,
therefore, requiring retraining of the model for the local setup.
None of the works above have looked at or addressed this
problem; we are not only investigate retraining requirements
for maintaining high identification accuracy over an extended
period but also investigate the comparative performance of the
IoT identification algorithms on the same dataset.

III. DATASET AND MODELS

A. Dataset

To capture data, we built a test-bed that currently comprises
41 different IoT devices. Table I describes the devices in our
test-beds, by category. In each category, these devices were
chosen as the most popular one by a large online retailer.

In the test-bed, in addition to the devices, a Linux server
running Ubuntu 18.04 with two Wi-Fi cards for 2.4 GHz and
5 GHz connections, plus two 1 Gbps Ethernet connections for
LAN and Internet connectivity are part of the setup. The server
sits outside of any firewall and has a public IPv4 address.
However, to match a regular home network environment, all
IoT devices are behind a NAT setup and cannot be accessed
directly from the Internet. The monitoring software automati-
cally detects the connection of a new device to the network,
assigns it a local IP address, and starts capturing packets using
tcpdump. Each device’s traffic is filtered by MAC address into
separate files. Each file is stored in a pcap format.

Each device is assigned a unique device ID. In some
cases, we extract features from TCP/UDP flows. Each flow is



identified by a 5-tuple (source IP address, source
port, destination IP address, destination
port, transport protocol). Each device generates
multiple flows. When a flow is extracted from the pcap file, it
is assigned a device ID. Each flow is classified independently
of the other flows generated by the same or other devices.

Data were collected over a period of 27 weeks. During this
period the interaction with the devices was rather sporadic.
Given that the devices were deployed in the lab with peo-
ple present during the daytime, some of the devices might
have been occasionally activated, e.g., cameras with motion
detection or a smart speaker reacting to the user’s request.
However, these activations were rather rare. Researchers did
not perform any software update that required manual inter-
vention, i.e., confirming the update using the accompanying
app. However, some devices might have updated themselves
without researchers’ knowledge (e.g., Amazon Alexa devices
update themselves automatically). Researchers also sporadi-
cally checked whether the devices are still connected to the
Internet and functioning properly. This check has been done
via a cell phone using an accompanying app.

We are aware that the test-bed setup is not an approximation
of a usual household environment. In the household environ-
ment the interaction with the devices could be expected to
occur more often and probably follow some pattern. In our
test-bed scenario, these devices were mostly idle. Additionally,
our test-bed contains IoT devices only, i.e., non-IoT devices
such as laptops, computers, or cell phones are not present. The
only cell phones connected to the test-bed are used to control
the IoT devices. The traffic generated by these cell phones
are stored in separate pcap files and are not included in the
training dataset.

To evaluate whether the model can reliably classify IoT
devices, we split the collected data into three periods, each
9 weeks long. We then train each ML model using data from
only one period, while evaluating them on the whole dataset
of 27 weeks.

B. Processing Traces

In this subsection, we list four different IoT device identi-
fication models that we analyzed and describe how data were
pre-processed for each of them.

1) Multi-stage RFC with 1 Hour Window: This is one of the
pioneering work in IoT device identification by Sivanathan et
al. [5]. This classifier extracts features from a traffic collected
over the duration of one hour. This two-stage approach uses the
combination of Naive Bayes Multinomial (NBM) classifier and
the Random Forest classifier (RFC). In the first stage, NBM is
used to classify bag of words, i.e., contacted domain names,
port numbers, and cipher suites used. In the second, stage the
output from the first stage and the following features from

TABLE II: List of features extracted from 1 hour window of network
traffic used for training of two-phase RFC models.

Feature Name Feature Description
First Stage Using Naive Bayes Multinomial Classifier

bag of ports list of ports contacted
bag of domains list of domains contacted
bag of ciphers list of used cipher suites

Second Stage Using Random Forest Classifier

flow volume volume of flow
flow duration duration of flow
flow rate rate of flow
sleep time sleep time
dns interval interval between DNS requests
ntp interval interval between NTP requests
ports class class for bag of ports (1st stage)
ports confidence confidence for bag of ports (1st stage)
domain class class for bag of domains (1st stage)
domain confidence confidence for bag of domain (1st stage)
cipher class class for bag of cipher suites (1st stage)
cipher confidence confidence for bag of cipher suites (1st stage)

TABLE III: List of features extracted from 1 second window of
network traffic for training of RFC and DTC models.

Feature Name Feature Description

bytes sum sum of bytes of all packets
bytes avg average size of packets
bytes std standard deviation of size of packets

the 1 hour window of traffic are extracted: flow volume, flow
duration, flow rate, sleep time, DNS interval, and NTP interval.
These features are summarized in Table II. After processing
the captured traffic, our dataset contains 130,460 records.

2) 2D Convolutional Neural Networks on Raw Packet Data:
Convolutional networks (CNN) were used in image classifica-
tion for a very long time. Their advantage is that they are
capable of automatic extracting of features. Researchers have
been using them to process raw packets to either classify an
IoT device [7] or a network flow [8]. For each TCP or UDP

TABLE IV: List of features extracted from TCP/UDP flows used
for training of RFC and FC-NN models.

Feature Name Feature Description

src port source port
dest port destination port
bytes out number of bytes sent
bytes in number of bytes received
pkts out number of packets sent
pkts in number of packets received
ipt mean mean of inter-packet interval
ipt std standart deviation of inter-packet interval
ipt var variance of inter-packet interval
ipt skew skewness of inter-packet interval
ipt kurtosis kurtosis of inter-packet interval
b mean mean of packet sizes
b std standard deviation of packet sizes
b var variance of packet sizes
b skew skewness of packet sizes
b kurtosis kurtosis of packet sizes
duration duration of the stream
protocol protocol ID
domain second and top level domain



flow first X packets are order in rows. Then for each packet
first Y bytes are extracted. If the packet is smaller than Y or
there are fewer than X packets in the flow, the empty space
is padded with zeroes. Additionally, fields from the IP header
which can uniquely identify the device, such as source MAC
or IP address, are replaced with zeroes. This yields an input
grid of the size X × Y which is passed to the CNN. In this
paper we used X = 10 and Y = 250 [7]. After processing
all TCP/UDP flows, our dataset consists of 19,771,368 input
grids.

The evaluated convolutional network consisted of the fol-
lowing layers: Convolutional, MaxPooling, Convolutional,
MaxPooling, Flatten, Dropout, and an output Dense layer.

3) Multiple Classifiers on 1 Second Window: In this case
researchers extracted three features from each second of traffic
generated by an IoT device [9]. These features are the sum of
the size of all packets, the average size of a packet, and the
standard deviation of the size of a packet. These features are
summarized in Table III. The researchers then evaluated five
different classifiers: Random Forest, Decision Tree, Support
Vector Classifier, K-Nearest Neighbors, and Voting Classifier.
The Voting Classifier used four previous classifiers to classify
the 1 second network trace by choosing the device with
most votes. After processing the captured traffic, our dataset
contains 75,396,781 records.

4) RFC and FC-NN on TCP/UDP Flows: We also propose
a new IoT device classification system based on features
extracted from TCP and UDP flows. We processed each pcap
file using joy2 utility which extracts the following features
from each TCP/UDP network flow (summarized in Table IV):
source and destination IP address, source and destination
port number, number of packets sent and received, bytes of
packets sent and received, starting and ending time of the flow.
Additionally, joy extracts DNS request and replies which can
be later analyzed. Flow features are extracted if the network
flow is inactive for more than ten seconds, or if the network
flow is active for more than 30 seconds. If the network flow
continues, a new record is created. It means, that a set of
features is extracted at latest after 30 seconds.

The extracted features contain also information about the
first up to N packets. We used the default value of N = 50.
This information includes data about packet sizes and inter-
packet intervals. Using information about packets, additional
features are computed, i.e., duration of the flow, and for
both, packet sizes and inter-packet intervals, mean, standard
deviation, variance, skew, and kurtosis is computed. Each flow
is assigned the device ID.

The list of DNS responses is used to map IP addresses to
domain names. We chose not to use IP addresses as a feature
because they may not be consistent due to the nature of the ser-
vices running in cloud. A virtual server may migrate to another
physical server and its IP may change. Or a new server might
be temporarily started to balance the load. Additionally, many
large manufactures are using DNS load balancing where the

2https://github.com/cisco/joy

same domain is translated to different IP addresses. Therefore,
we decided to use the domain name as a feature. However, we
noticed that many times the domain name differs on the third
or further level. This is especially common when a content
delivery network is contacted. Therefore, we decided to use
only the second and top level domain name as a feature. In
our dataset we identified only 153 unique second and top level
domain names. The final dataset contains 60,653,581 records.

The dataset is evaluated using Random Forest classifier and
Fully Connected neural network. The fully connected network
consists of a Dense input layer, two hidden Dense layers, and
an output Dense layer.

IV. EVALUATION

In this section we evaluate the selected machine learning
models on various data. The dataset spans over the period
of 27 weeks. The dataset is split into three equally-sized
periods covering weeks 1-9, 10-18, and 19-26 respectively.
Each model is trained on one period using stratified sampling
with 80%-20% split between the training and testing set. For
the evaluation, the whole dataset spanning 27 weeks is split
into 1-week chunks and each week is evaluated as a whole.

Machine learning based classifiers (NBM, RFC, and DTC)
are implemented using python scikit-learn library3. All clas-
sifiers were using default settings. Neural network based
classifiers were implemented using Keras library4. All models
were trained for the duration of 50 epochs and the model with
the highest accuracy was chosen for the evaluation.

Data pre-processing and feature extraction is described in
(§III-B). All models were evaluated on a server using two
Intel Xeon Gold 6132 CPU @ 2.6 GHz with 256 GB of RAM
running Ubuntu 18.04 operating system.

We used a standard evaluation metric [33], F1 score for the
overall measure of the models accuracy and is defined as:

Precision =
True Positive

True Positive+ False Positive

Recall =
True Positive

True Positive+ False Negative

F1 = 2× Precision×Recall

Precision+Recall
, F1 ∈ 〈0, 1〉

where TruePositive represents the number of times when
a device was correctly classified, False Positive the number
of times when the device was classified as some other device,
True Negative the number of times when the device is
correctly not classified, and False Negative the number of
times when a device is classified instead of a correct device.
F1 score represents a harmonic mean of precision and recall.

3https://scikit-learn.org/
4https://keras.io/

https://github.com/cisco/joy
https://scikit-learn.org/
https://keras.io/
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(a) 1 hour window with 2-stage NBM + RFC
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(b) Raw packets with 2D Convolutional Network
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(c) 1 second window with RFC
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(d) 1 second window with DTC
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(e) TCP/UDP flows with RFC
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(f) TCP/UDP flows with Fully Connected NN

Fig. 1: F1 score of various classifiers on various datasets. Each line corresponds to a different training window (i.e., weeks
1-9, 10-18, or 19-26). The darker color shows the period when the model is evaluated on the training data. Vertical bars splits
the figures into three separate periods.



A. Multi-stage RFC with 1 Hour Window

The model relies on two stage evaluation and is evaluated
on statistical data collected over the period of 1 hour [5]. The
evaluation of this model can be seen in Figure 1a. This model
achieves the near-perfect F1 score when evaluated on the same
data as the training set. Even if the dataset is split into 80%-
20% between training and testing data, because the testing
data is chosen from the same time period as the training data,
the model achieves very high F1 score.

Because the features are extracted from a network traffic
over a longer period of time (i.e., 1 hour), the model can
achieve higher accuracy for devices with a relative small and
regular network footprint, e.g., a weather station. However,
devices which rely more on the interaction with a user or
its environment, such as smart speakers or doorbell cameras
with a motion detection, can produce various amount of traffic
during different parts of a day. Additionally, this approach
relies on knowing all the contacted domains, port numbers, and
used cipher suites in advance. This knowledge cannot always
be obtained in advance as a firmware update might change any
or all of these variables. Additionally, domain names might be
automatically generated by a load balancer.

However, when the same model is evaluated on a dataset on
another time period than the training period, the accuracy of
the model degrades with the absolute time difference between
the training and the testing dataset. This applies to all three
training periods. On average, the F1 score decreases by 18
percentage points when comparing the performance of models
evaluated on the training period vs. other periods.

B. 2D Convolutional Neural Networks on Raw Packet Data

Several researchers have used 2D Convolutional Neural
Networks (CNN) to automatically extract features and perform
classification of the IoT devices or network flows [7], [8].
These approaches are based on ordering the packets into a grid
of a fixed size and passing it to the 2D CNN. Usually, these
multiple CNN layers are followed by other layers which can
slightly increase the accuracy of classification. Because of the
computational complexity and time restrictions, we evaluated
a simpler model consisting of 2D CNN layers only. However,
we believe that the results can be extrapolated to other more
complex models.

Figure 1b shows performance of the CNN in IoT device
classification. Similar to the two-stage RFC, the best F1 score
is achieved when evaluated on the dataset from the same pe-
riod as the training dataset. Surprisingly, the accuracy is rather
high and is very close to the two-stage RFC. Additionally,
CNN can achieve such high F1 score using only a small
subset of packets from each flow, as opposed to collecting and
analyzing traffic from an hour long window. CNN also do not
require to know any information in advance (e.g., contacted
domain names) or manual extraction of features. The results
show that CNNs are a promising technique for IoT device
classification.

However, similar to other approaches, the high accuracy
is achieved only when evaluated on the same period as the

training set. Outside of the training period, the accuracy
gradually degrades, even though not as quickly as with other
models. The average difference in the F1 score between the
models evaluated on the training dataset and other periods is
21 percentage points.

The models were trained for 50 epochs with batch size of
128. They achieved their peak accuracy very close to the 50th

epoch.

C. Multiple Classifiers on 1 Second Window

Authors of this model showed that even a simple statistics
on a 1 second window worth of network traffic can achieve
rather high classification accuracy [9]. The advantage of this
approach is its simplicity, very low computational and memory
overhead, and the fact that it does not need to know any prior
information (e.g., contacted domain names). The researchers
showed, that RFC is the best single model, however, by
combining results from multiple different machine learning
models, it is possible to achieve even higher accuracy. In this
case they combined four different ML models: RFC, DTC,
SVC, and K-NN. Even though we tried to replicate these
results, because our dataset was incomparably larger than the
one used by authors, we were not able to finish the training
of the SVC and K-NN models. Therefore, we present here the
results using the RFC (Figure 1c) and the DTC (Figure 1d)
models only.

Figures show that the F1 score achieved by both models is
virtually the same. However, it can be seen the similar trend
as previously. The highest accuracy models achieve when they
are evaluated on the data from the same period as they were
trained on. However, when they are evaluated on the dataset
outside their training period, their accuracy degrades over time.
This is most visible with the model trained on the last period.
When this model is evaluated on first two periods, it achieves
significantly lower F1 score. On average, the F1 score is lower
by 12 percentage points in the case of RFC and 13 percentage
points in the case of DTC.

D. RFC and FC-NN on TCP/UDP Flows

The last evaluated approach is based on TCP/UDP flows.
We have trained two classifiers on these datasets: RFC (Fig-
ure 1e) and the Fully Connected NN (Figure 1f). As can be
seen in the figures, the overall performance of both models
is rather similar, with the difference that RFC performs on
average by 7 percentage points better than the NN model.
As expected, also these two models show similar F1 score
degradation when evaluated outside their training period. On
average, the RFC model achieves F1 score 20 percentage point
lower when compared to evaluation on the training period,
while the F1 score of Fully Connected NN is lower on average
by 21 percentage points.

Interestingly, the size of the RFC models ranged between
100-150 GB which made it challenging to evaluate. Even
though the neural network models were trained for 50 epochs,
they achieved their peak accuracy no later than in 11th epoch.



Since then, the accuracy was constantly decreasing and by the
50th epoch it was more than 10 percentage points lower.

V. DISCUSSION

Figure 1 shows that no matter which classifier is used,
either based on classical machine learning techniques or on
neural networks, they all lose their accuracy over time. While
their accuracy is reasonably high when evaluated on the data
from the same time period as they were trained on, once they
are used for evaluation on data outside of this period, their
accuracy decreases with the absolute difference in time.

The same applies to the set of extracted features (or the
lack of them). Whether the features are extracted from an hour
long window with some prior knowledge of data, a simple one
second window statistics, a set of raw bytes from packets, or
an elaborate features extracted from TCP/UDP flows - all of
these features lead to accuracy degradation when evaluated
outside of the training dataset.

What is also important is that the data produced for this
experiment are from an academic test-bed deployed in a
rather controlled environment with a very small interaction
of researchers with the test-bed. Thus, we can assume that
data produced by various sets of devices in users’ home will
vary much more and therefore the models might degrade even
faster.

Because the dataset was obtained from a test-bed in a
controlled environment, the network traces contain mostly
background traffic of these devices. In a home environment
with a regular interaction with the devices the number of
different network flows will increase, which will lead to
potentially larger search space and lower accuracy.

Interesting behavior can be seen when comparing the F1

score of all models outside their training period. This fact is
the most visible with the models trained on data from period
one and two (green and blue line, respectively) and evaluated
on data from period three. For all models and all various
features, these two lines are almost parallel. Similar behavior
can also be seen with red and blue lines in period one and
red and green line in period two. This fact suggests that the
network traffic produced by the devices changes over time and
is not a problem of a particular feature extraction or a machine
learning model.

Another interesting data point is the second week where
the F1 score of most of the models suddenly drops. However,
if the data are included in the training set (dark green line),
most of the models are capable to learn this anomaly and
perform with high accuracy. This has one obvious exception
- 2D Convolutional Neural Network (Figure 1b) whose F1

score drops to less than 40%. Again, because this behavior
is consistent across various models and features, it can be
assumed that the pattern of the network traffic of the devices
has significantly changed.

Because the similar decrease in classification accuracy over
time can be seen across different machine learning models and
using different set of features, it suggests that the problem of
IoT device identification is not a problem of a single approach,

but rather a bigger problem that requires further research. It
appears that the network traffic generated by these devices
changes over time and therefore a single model cannot stay
accurate for a longer period of time. In this paper, we have not
investigated the root cause of the accuracy decline. We have
not found any obvious reason for this behavior and change in
network traffic. We plan to defer the further investigation for
the future work. We also plan to investigate whether certain
class of devices is more susceptible to change of network
traffic patterns than the others.

In this paper we have used out-of-the-box parameters for
ML models and we did not do any fine-tuning of the parame-
ters. Fine-tuning of the parameters is a rather time consuming
activity that would also require significant computational re-
sources. We believe, that fine-tuning of the parameters would
lead to marginally higher accuracy, but it would not affect the
trend of decreasing accuracy over time.

It can also be expected that because these devices also
communicate among themselves, a model] created for a device
in one network setting might not be accurate for the same
device in another network setting. Additionally, users’ usage
pattern change between households and therefore it can be
expected that a device might have a significantly different
network traffic pattern, even when it is deployed in the same
network setting.

In order to study this scenario, we are working on a home
router device, that will allow users to deploy small test-beds
in their homes. The user would connect their IoT devices to
the router which would collect the traffic generated by these
devices. The router would send anonymised packet headers
(without payloads) to the server, where we would be able to
analyze them.

One of the possible solutions that we would like to inves-
tigate in the future is to keep updating the model with new
data at the edge, meaning retraining or tuning of models on
edge devices [34], [35]. This could potentially not only solve
the problem of changing traffic pattern over time, but also the
problem of a device deployed in different network settings.

VI. CONCLUSION

In this paper we revisited four different approaches to
IoT device identification based on the network traffic. For
that purpose we have collected network traffic from a test-
bed containing 41 different IoT devices over the period of
27 weeks. We have split these data into three periods, each
containing 9 non-overlapping weeks. Then we have used three
various approaches found in the literature. First, we evaluated
a two-stage Random Forest classifier using features extracted
from a 1 hour window of collected traffic [5]. Next, we used
2D Convolutional Neural Network on a stream of raw packets
[7], [8]. Later, we used Random Forest and Decision Tree
classifiers on features extracted from a 1 second window of
network traffic [9]. Finally, we proposed and evaluated models
using Random Forest classifier and Fully Connected Neural
Network on features extracted from TCP/UDP flows.



Each model was trained using data from one period, while
it was evaluated on data from the whole dataset (i.e., all
three periods). We have shown that while the accuracy of
these models is high when tested on the dataset from the
same period as the training dataset, the accuracy degrades
over time when evaluated on dataset collected outside of
the training period. The average degradation of the models’
accuracy ranged between 12 and 21 percentage points, with
an average of 17 percentage points.

Because this behavior is consistent across all models and
various features extracted, we believe that the data generated
by the devices change over time and cannot be captured by a
single model. We propose a possible solution for this problem
is by updating the model at the edge [34], [35].
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