
Shedding (Some) Light on Mobile Browsers Energy
Consumption

Matteo Varvello
Nokia, Bell Labs

matteo.varvello@nokia.com

Benjamin Livshits
Brave Software
ben@brave.com

Abstract—Following its desktop counterpart, the mobile
browsers ecosystem has been growing from few browsers
(Chrome, Firefox, and Safari) to a plethora of browsers, each
with unique characteristics (battery friendly, privacy preserving,
etc.).The main contribution of this work is a thorough benchmark
of 15 Android browsers using multiple settings (adblocking, dark
mode, power savings), devices, workloads (up to 600 websites and
100 concurrent tabs), and network configurations. We perform a
battery-centric analysis and show that: 1) 5 out of 8 adblocking
browsers produce significant battery savings (up to 30% in
the case of Brave) compared to more popular browsers like
Chrome or Firefox, 2) Opera is the most efficient browser when
dealing with a large number of concurrent tabs, 3) dark mode
on AMOLED devices offers an extra 12% of battery savings,
granted that the whole webpage is darkened, and 4) up to 30% of
energy is wasted loading ads-bloated webpages on a slow mobile
network. We exploit the latter observation to build AttentionDim,
a screen dimming mechanism driven by browser events which we
integrated with Brave. Via experiments with 10 volunteers over
a month, we conclude that AttentionDim offers battery savings
of up to 30% with minimal impact on the end-user experience.

Index Terms—Browser, Web, energy, performance.

I. INTRODUCTION

When it comes to mobile apps, users are mostly tied to
the official app from the services they access, e.g., YouTube
or Facebook. This is not the case for mobile browsers where
plenty of options are currently available for both Android and
iOS [6]. Such a competitive environment constantly stimulates
the development of new browsers as well as new browser
functionalities.

In the last years, there has been a growing interest in
reducing browsers (and apps in general) power consumption,
motivated by the ever-increasing phone usage and app com-
plexity. Adblocking—either in the form of an addon [7], [8]
or directly integrated in the browser [9]–[11]—is probably the
most popular feature which has recently been connected with
battery savings [2], [5]. Dark mode [12] is another feature
which, originally introduced for eye strains, is now credited
with high battery savings in presence of AMOLED screens
which are capable of turning pixels off when dark. The Yandex
browser even offers a power saving mode [13], of which not
much is known.

The first goal of this work is to shed some light on the
Android browser ecosystem. Our approach is clearly battery-
centric, but it also covers other metrics which directly impact

battery usage, like CPU and bandwidth utilization. Table I
shows a direct comparison of the measurement study we
perform in our work with similar studies that can be found,
to the best of our knowledge, among related works. The main
takeaway from the table is that our work completes previous
works in three aspects. First, we focus on a larger set of
browsers (15 versus 1, at most), and browser settings, e.g.,
also exploring dark and power saving modes. Second, we
cover a variety of workloads, investigating 7x the number of
websites tested in the largest previous study [4] and using
several workloads with up to 100 concurrent tabs. Third, we
are the first to evaluate browsers in the wild.

We have developed a browser testing suite [14] to study the
battery consumption (and more) of 15 Android browsers un-
der different configurations (classic, adblocking, dark-mode),
workloads (up to 100 concurrent tabs with websites extracted
from several lists of popular domains/webpages), devices, and
networks (WiFi and 10 locations in a North American mobile
network). Our analysis has generated the following findings:

Adblocking saves battery, but not all adblockers are equal
– Five out eight adblocking browsers (Brave, DuckDuckGo,
Firefox Focus, Opera and Firefox equipped with the Ublock
plugin) are more energy efficient than popular browsers like
Chrome, Baidu, and Firefox. This result holds both for ads-
heavy and ads-free websites. Three browsers (Kiwi, Op-
eraMini, and Vivaldi) were exceptions, due to either limited
adblocking and/or high CPU consumption. Brave’s aggressive
adblocking and low CPU consumption makes it the most
energy efficient browser in presence of ads. This aggressive
adblocking introduces a small penalty in absence of ads, where
Opera and DuckDuckGo achieve slightly lower battery usage.

Stress testing browsers matters! – Regardless of the websites
under test, Opera – despite lower adblocking capabilities –
resulted the most energy and CPU efficient browser as soon
as the number of concurrently opened tabs grows past 20.
Conversely, DuckDuckGo’s tab management fails to scale past
50-60 concurrent tabs.

Browsing in the (very) dark saves battery – Dark theme
offers an average 12% extra battery savings on AMOLED
devices. Such savings are realized when the whole content
of the page is darkened. Simple GUI darkening, e.g., current
Chrome’s dark mode, and Yandex power saving mode resulted
in no energy savings in our tests.978-3-903176-40-9 ©2021 IFIP



[1] [2] [3] [4] [5] This Work
Year 2012 2014 2015 2017 2020 2020
Power Monitor Agilent 34410A Monsoon Monsoon Monsoon Software Monsoon/Battor

Devices Android Dev.
Phone 2

Galaxy Nexus
dev. board Samsung S5 Samsung S4/S5,

Nexus Odroid-XU3 Samsung J7-Duo,
Galaxy J3

Android Vrs 4.2 4.2.1 4.4 4.3/5.1.1 4.4 8.0/9.0

Browsers Built-in
Browser

Built-in
Browser

Chrome
vrs 38 Chrome vrs 31 Brave,

Chrome vrs 64 15 browsers

Workloads 25 (indiv.) 5 (indiv.) 10 (indiv.) 80 (indiv.) 23 (indiv.)

News: 10 tabs
Ads-Free: 10 tabs
Top Sites: 600
(up to 100 tabs)

Features Default Default,
Adblocking Default Default Default,

Adblocking
Default,Adblocking,
DarkMode,PowerSave

Connectivity WiFi/3G (Lab) WiFi/3G (Lab) WiFi/3G (Lab) WiFi/3G (Lab) WiFi (Lab) WiFi/4G (Lab, Wild)
TABLE I

COMPARISON WITH RELATED WORK.

Battery is “wasted” while waiting for a webpage to load –
When network connectivity deteriorates, e.g., low signal in a
mobile network, up to 30% of extra energy is wasted showing
an empty page. Under these challenging conditions, the energy
benefits of adblocking browsers are even more prominent.

The latter observation motivates AttentionDim, a
generic battery saving mechanism for mobile browsers. Our in-
tuition is to lower the screen brightness when the user attention
is low, e.g., during a page load. We build AttentionDim
as a Chrome patch so that it can be integrated with any
Chromium-based browser, e.g., 12 out the 15 browsers we
tested. Next, we perform a user study involving 10 volunteers
who used an AttentionDim-med version of the Brave browser
over a month. The analysis of the data collected shows that
AttentionDim reduces battery consumption by up to 30%,
independently of the device’s screen technology, offering high
user Quality of Experience (mean opinion score of 4.8/5 from
a survey).

II. METHODOLOGY

We start by discussing our browser selection process. First,
we target popular browsers. Second, we target adblocking
browsers – either native or enhanced with adblocking ad-
dons – because of the potential energy benefits associated
with serving smaller and simpler webpages [2], [5]. Finally,
we target browser settings associated with energy saving
capabilities, namely dark mode and Yandex power saving
mode. Based on this strategy, we have selected 15 browsers
whose name, version, underlying engine (i.e., Blink/Chromium
or Gecko/Firefox) and popularity are reported in Table II
(see Appendix). The popularity column is derived from data
reported by netmarketshare [15] as of October 2020, before
being retired due to [16] which breaks their browser detec-
tion methodology based on the user-agent. For browsers not
included in [15], the table reports the most recent number of
downloads from Google Play Store, as of March 2021. As
testing devices, we use a Samsung J7 Duo (J7DUO) and a
Samsung Galaxy J3 (SMJ337A). The main difference between
the two devices is their screen technology: “Active Matrix
Organic Light Emitting Diodes” (AMOLED) for the J7DUO

Browser Version Chrome or Popularity
Firefox Vrs

Chrome 86.0.4240.99 86.0.4240.99 89%
QQ 10.3.1.6830 66.0.3359.126 2.8%
Samsung
Browser 12.1.4.3 79.0.3945.136 2.4%

Baidu 4.14.5.31 86.0.4240.99 0.79%
Firefox 81.1.5 Gecko/81.0 0.44%
Yandex 20.8.5.97 84.0.4147.135 >100M
Edge 45.09.2.5079 77.0.3865.116 >10M

Opera Mini 51.0.2254
.150807 86.0.4240.99 1.15%

Opera 60.2.3004
.55409 85.0.4183.127 0.64%

Brave 1.15.73 86.0.4240.75 >10M
DuckDuckGo 5.67.0 86.0.4240.99 >10M
Firefox
Focus 8.8.3 Gecko/81.0 >5M

Firefox
UBlock 81.1.5 Gecko/81.0 >5M

Kiwi Git201009 86.0.4240.75 >1M
Vivaldi 3.4.2066.74 86.0.4240.99 >100K

TABLE II
ANDROID BROWSERS SELECTED FOR PERFORMANCE EVALUATION.

“POPULARITY” REFERS TO EITHER MARKET SHARE (%) OR NUMBER OF
DOWNLOADS AS PER THE GOOGLE PLAY STORE. BROWSERS IN THE

BOTTOM OF THE TABLE HAVE ADBLOCKING FEATURES.

and “Liquid Crystal Display” (LCD) for SMJ337. Hardware-
wise, the J7DUO is more powerful, with twice as many cores
(octa vs quad-core) and RAM (4 vs 2GB).

The battery of these devices are connected to a Monsoon
power meter [17] which produces fine-grained battery read-
ings. A second battery for the SMJ337 is also connected to
battor [18], a portable power meter which enables mobile
experiments out of lab settings. More details on this setup
can be found in Section III-D.

These devices are also connected to a Rasberry Pi (via WiFi
to avoid USB noise on the power readings) which instruments
the browsers while monitoring their resource utilization, e.g.,
CPU usage. Both tasks are realized via the Android Debugging
Bridge (ADB), a powerful tool used for debugging and testing
Android apps. We wrote a generic browser testing tool which
works across 15 browsers, several settings, and our testing
devices (and more), which we open source at [14]. Before

2



Ads-Free News
https://qwant.com https://theblaze.com
https://mozilla.org https://thedailybeast.com
https://gnu.org https://independent.co.uk
https://i-register.in https://nypost.com
https://www.wikipedia.org https://salon.com
https://ipko.pl https://sfgate.com
https://bankmellat.ir https://latimes.com
https://jw.org https://cnn.com
https://sarzamindownload.com https://mirror.co.uk
https://nginx.org https://cnet.com

TABLE III
SEQUENCE OF WEBSITES TESTED WITHIN THE ADS-FREE AND NEWS

WORKLOADS.

each experiment, the device under test is configured to min-
imize noise on the measurements. For instance, background
processes and app notifications are disabled. Next, the browser
is setup with a clean profile, i.e., its cache is emptied, and local
data like configuration, cookies, and history are erased.

Our generic browser testing tool takes as input a workload,
a JSON file describing which websites to test and how, e.g.,
whether opening each website in a new tab or not. We selected
the following workloads:

News and Ads-free – Most users keep between 1 and 10
open tabs in their browser [19]. Accordingly, in these two
workloads we sequentially open 10 testing pages in a new tab.
Each page is requested for 15 seconds, which allows full page
load in the testing network conditions (WiFi with ∼50Mbps
in download/upload). After the page is loaded, we simulate
user interaction for an extra 15 seconds by scrolling the page
down four times and then up two times.

With respect to the pages to be tested, we pick the landing
pages of 10 news websites popular worldwide (news workload)
and 10 (hard to find) ads-free websites (ads-free workload).
The rationale of this selection is that these two workloads
are realistic representation of, respectively, the best and worst
case scenarios for adblocking browsers – given news websites
tend to host lots of advertisement [20]. Table III shows the
sequence of websites tested under the news and ads-free
workloads. To find ads-free websites, we crawled the tranco
top 1,000 websites [21] and matched the content they served
against the EasyList and EasyPrivacy filters [22]. We further
manually tested each ads-free website to verify functionalities,
i.e., response times within 15 seconds and lack of ads.

Top Websites Lists – In these workloads, we stress test the
browsers by loading 100 websites sequentially, each in a new
tab. We choose 100 tabs given Chrome stops counting tabs
at this point, suggesting that it should be an upper bound
for most users. For these workloads, we used several free
lists of popular websites: Tranco [21], Majestic [23], and
the recently released Hyspar [24], [25]. The Tranco list is a
research effort aiming to replace Alexa [26] due to its paywall.
The Majestic list is also free and representative of websites
attracting actual Web browsers traffic [27]. Finally the Hyspar
list is a recently released list which focuses on internal rather
than landing pages, motivated by significant differences, e.g.,

size and number of ads, when compared with their originating
landing page. For each list, we choose the top 100 websites,
as well as 100 pages ranked between 1,000 and 1,100. In total,
we have constructed a corpus of 600 websites to be tested –
of which 539 are unique since 61 websites are in common
between tranco and majestic top 100 websites.

III. BROWSERS EVALUATION

A. Popular or Adblocking?

Figure 1 summarizes the performance evaluation (battery
discharge, bandwidth consumption, and CPU utilization) of all
browsers under test with default configuration, while consid-
ering news and ads-free workloads, and SMJ337A connected
over WiFi. Barplots report, for each metric, the mean with
errorbars for standard deviation (values computed over 5 repe-
titions). Given CPU consumption varies during an experiment,
Figure 1(c) shows one representative Cumulative Distribution
Function (CDF) per browser. We use circle markers (barplots)
and dashed lines (CDFs) to highlight adblocking browsers.
Browsers are ordered by energy consumption under the news
workload, and organized with popular browsers on the left and
adblocking browsers on the right.

News workload – Figure 1(a) shows that popular browsers
(Chrome, Samsung, QQ, Baidu, Firefox, Yandex, and Edge)
have similar energy consumption with values mostly within
5% of each others, e.g., from 125 to about 118mAh. Baidu
reduces energy usage by another 5% (absolute value of
110mAh). This reduction is due to Baidu not allowing multiple
opened tabs; instead, each new tab replaces the previous one.
Most adblocking browsers – with the exceptions of Kiwi,
Opera Mini, and Vivaldi – are 20-30% more power efficient
than regular browsers consuming between a minimum of
82mAh (Brave) and a maximum of 92mAh (Firefox equipped
with the Ublock plugin). Kiwi and Opera Mini are in line with
non adblocking browsers (∼120mAh) while Vivaldi consumes
the maximum energy measured: 129mAh.

To further explain the latter observation, we investigate
the amount of bandwidth saved by the different adblocking
browsers. Figure 1(b) shows that Kiwi and Vivaldi fail at
capturing most ads, e.g., they consume 2x the bandwidth of
actual adblocking browsers. OperaMini’s adblocking is instead
comparable to others, implying that the extra bandwidth is
not the cause of its high energy footprint. Brave is the most
aggressive adblocker, saving an extra 5MB when compared
to DuckDuckGo, the browser ranked second with respect to
bandwidth saving via adblocking.

To explain the high energy consumption of OperaMini
we resort to Figure 1(c), which analyzes each browser CPU
consumption. Opera Mini (along with Vivaldi) shows very
high CPU consumption, with median of 65%, 2.5x times the
CPU consumption of the lightest browsers: Brave, Firefox
focus, and DuckDuckGo. These 3 browsers have similar CPU
utilization for about 65% of the values. Next, Brave is less
likely to cause high CPU utilization which is bounded to 60%

3



(a) Battery discharge (mAh). (b) Bandwidth consumption (MBytes) (c) CDF of CPU utilization during a single run ;
news workload.

Fig. 1. Perf. evaluation of 15 Android browsers ; News (left barplots) and ads-free (right barplot) workloads; SMJ337A ; WiFi.

while Firefox Focus, for instance, causes higher CPU utiliza-
tion during 10% of the workload. DuckDuckgo further departs
from Brave and Firefox Focus, showing a CPU footprint more
similar to Opera and Firefox Ublock for the second 50% of
the distribution.
Ads-free workload – We next focus on a workload consisting
only of websites without ads. In this case, Figure 1(a) shows
a much more similar behavior between browsers, with a
minimum and maximum energy usage of 68mAh (Kiwi) and
80mAh (QQ), respectively. The same argument holds for the
bandwidth consumption, overall stable around 15MB. QQ and
browsers using the Firefox engine are exceptions, consuming
up to an extra 10MB (or 66% more). This additional data is
in browser, meaning that it is not originated by the websites
being tested but independently by the browser.

Figure 1(a) also shows that, in absence of ads, DuckDuckGo
and Kiwi slightly outperform Brave, i.e., 68mAh vs 72mAh.
Given Figure 1(b) (news workload) indicates that Brave’s
adblocker is the most effective one, this result indicates the
Brave’s aggressive adblocking causes a (small) performance
penalty in absence of ads. While this result is in line with what
observed in [5], our tests show that it does not generalize to
other adblocking browsers.

Next, we dive into the energy consumption per browser tab.
Figure 3(a) shows the average energy consumption associated
with the loading of each website within the news workload,
which has shown a more diverse behavior among browsers.
We omit the standard deviation for ease of visibility, but it
is in line with the previous (cumulative) result. As expected
from Figure 1(a), adblocking browsers tend to consume less
energy. However, not one browser consumes the least for each
page. For example, while Brave consumes the least on 7 out
of the 10 pages, it is outperformed by DuckDuckGo on inde-
pendent.co.uk, Firefox equipped with Ublock on sfgate.com,
and Baidu on latimes.com.

Figure 3(a) also shows the cost of onboarding. Each browser
onboarding procedure is different: some browsers explain their
functioning (Brave), some ask for a configuration (Chrome),
some do nothing (Kiwi). Post onboarding behavior is also dif-
ferent: some browsers launch an empty page (Kiwi), some load

a search engine (Chrome), and some show some news (QQ).
Due to the significant different behaviors during onboarding,
in our experiments we always synchronize the browsers after
one minute, which is long enough to accommodate even
the longest onboarding procedure (QQ browser, roughly 30
seconds). Further, we discard the cost of onboarding for each
workload since it is not a common user operation. Figure 3(a)
shows that onboarding is overall more energy consuming than
regular browsing. This cost comes mostly from traffic volumes,
either because the onboarding terminates on a news page (like
in the case of the QQ browser, causing the download of about
60MB) or to download useful browser components, like the
adblocking list used by Brave which account for an extra 5MB.

B. Top Websites Lists

We now stress test browsers when loading 100 websites
(in 100 tabs) selected from three popular lists: tranco, ma-
jestic, and hispar. Figure 2 summarizes the results (energy,
bandwidth, and CPU consumption) for Chrome, Opera, Brave
and DuckDuckGo, i.e., the top performing browsers from
the previous workloads. We also experimented with Baidu
and QQ browsers but we had to dismiss them due to: 1)
crashing, 2) semi-random notification windows interrupting
the automation. From each list, we select the top 100 websites
as well as the 100 sites at position 1,000. The same loading
procedure as before is used: we let a page load for 15 seconds,
then interact with it for the next 15 seconds. In total we tested
600 websites (of which 539 are unique) during about 24 hrs.
We repeat this experiment over three consecutive days.

Figure 2(a) shows the energy consumption per browser and
workload. The figure confirms – at large scale – the benefits
of adblocking with respect to energy savings, given that Opera
and Brave outperform Chrome regardless of the workload. The
same does not always hold for DuckDuckGo, especially when
focusing on the top 100 websites of each list. When comparing
Chrome, Brave, and Opera, this test allows us to make two new
observations. First, Opera is now slightly more energy efficient
than Brave, with 2-5% less energy usage, depending on the
websites list. Second, Chrome is a much closer competitor,
especially when considering top 100 websites. In fact, while
for the top 100 websites adblocking browsers save 4-10% of

4



(a) Battery discharge (mAh). (b) Bandwidth consumption (MBytes) (c) Boxplot of CPU utilization as a function of the
number of concurrently opened tabs.

Fig. 2. Stress test (100 concurrent tabs) of the top performing Android browsers ; Tranco, Majestic, Hispar lists ; SMJ337A ; WiFi.

energy compared to Chrome, this percentage grows past 10%
(10.8% and 12.5% for Opera and the majestic and hispar lists)
when considering less popular websites.

Figure 2(b) offers an insight on why there is a reduced
gap between Chrome and adblocking browsers. Even the best
adblocking browser (Brave) manages to only save 13.8%
(tranco), 18.6% (majestic), and 6.6% (hispar) of the bandwidth
consumed by Chrome, which is far from the 40% savings
measured for the news workload. The bandwidth savings
increase as less popular websites are tested – 15.2% (tranco),
26.8% (majestic), and 25.6% (hispar) – which translate in
overall more energy savings.

When considering different lists, tranco and majestic offer
comparable results (energy and bandwidth) with their top 100
websites. This is not surprising given these lists share 59
websites. The hispar list contains internal pages which are
characterized by fewer ads than the landing pages contained
in the tranco and majestic list. This lack of ads translates in
minimum bandwidth savings from Brave (6% or ∼40MB).
The lists are then fully disjoint when focusing on lower rank
subsets, which generates new insights with respect to both
energy and bandwidth.

A second aspect to investigate is the high number of
concurrent tabs (up to 100). Figure 2(c) analyzes the evolution
of the CPU consumption, per browser, as the number of
tabs increases. We focus on the top 100 websites from the
tranco list, for which we measure small variance for all
browsers and metrics. Each boxplot accounts for CPU values
sampled every two seconds for a given set of tabs, in 10
tabs intervals. We start by focusing on the boxplots computed
when considering 10 opened tabs, which can be compared
with Figure 1(c) for the news workload. With respect to
Opera, Brave, and DuckDuckGo, the trend is similar, e.g.,
median CPU consumption of 20-25%. Chrome’s median CPU
consumption drops significantly (from 60% down to 25%)
which is another contributor to the reduced energy usage.

As the number of concurrently opened tabs increases,
Brave’s CPU consumption becomes consistently higher than
Opera – and DuckDuckGo up to 50 tabs – suggesting that
Opera is more efficient in handling a higher number of tabs.

Even when compared with Chrome, Opera does a better
job in keeping the CPU consumption bound. For instance,
Opera rarely passes 80% CPU utilization, only once with 60
concurrent tabs. In comparison, both Chrome and Brave reach
such value (and higher) multiple times. A split behavior is
observable for DuckDuckGo: low CPU consumption up to
50 tabs, rapidly increasing CPU usage between 50 and 80
tabs (median close to 80%), and then significant reduction
of CPU usage when the last 20 tabs are added. We have
verified a similar behavior across workloads, with the caveat
that the increase load might happen earlier – 10 tabs earlier,
for example, when testing the majestic-100 list. Although
hard to explain why we observe this specific behavior without
access to the code, this result suggests a pretty evident bug or
inefficiency in DuckDuckGo tab management code.

To further explore the latter result, we modified the 100 tabs
experiment to ensure a maximum of 10 concurrent tabs, i.e.,
each 10 tabs we close all previous tabs and then resume a test.
Figure 3(b) shows boxplots of the CPU consumption each 10
tabs. In this case Brave consumes consistently less CPU of
Opera (and Chrome), as observed in Figure 1(c) for the news
workload. Similarly, DuckDuckGo has a more consistent CPU
consumption, strengthening the above observations.

C. Power Saving Features

The previous subsections show that adblocking results in
significant power savings. We here generalize the analysis
with respect to other techniques, namely dark mode – which
can potentially save battery by allowing to turn pixels off
on AMOLED screens – and Yandex power saving mode, to
the best of our knowledge the only explicit power saving
feature offered by an Android browser. For this analysis, we
introduce the second device (J7DUO) which is equipped with
an AMOLED screen, i.e., dark pixels are indeed turned off
thus saving energy. Based on the previous results, for this
experiment we only focus on Chrome, Opera, and Brave, in
addition to Yandex.

Figure 3(c) shows the energy consumption across browsers
and devices, assuming the news workload. Regardless of the
device, the trend is the same as the one observed before, with
the most aggressive adblocking browser (Brave) bringing the

5



(a) Energy consumption per tab during the execu-
tion of the news workload; SMJ337A.

(b) 100 websites test in block of 10 concurrent tabs
; Tranco top100 ; SMJ337A.

(c) Battery discharge of adblocking, dark mode,
and Yandex power saving; News workload ; J7DUO
and SMJ337A (circle markers).

Fig. 3.

highest battery savings. In addition, dark mode offers about
11-13% extra savings on the J7DUO for Opera and Brave,
respectively. For Chrome-Dark we do not measure additional
savings; the “*” indicate that for Chrome we selected the
basic dark mode settings – i.e., the one available via GUI
without accessing chrome://flags – which does not darken the
page but only the browser’s GUI. We purposely selected this
mode to measure potential benefits from this feature, which
are negligible in our tests. As expected, dark mode only brings
benefits for the J7DUO (AMOLED screen).

We did not observe any difference when activating Yandex’s
power saving mode, despite the 9% battery saving advertised.
The figure also shows that the less powerful SMJ337A also
consumes ∼20% less than the J7DUO. This could be due
to many things, such as the bigger screen and overall more
advanced hardware to be powered.

D. Experiments in the Wild

Finally, we compare browsers performance in the wild,
i.e., when used on the go over a mobile network. We use
battor [18], a portable power meter powered directly by the
device. Given the lack of WiFi in these tests, we leverage Blue-
tooth to allow the Rasberry Pi to instrument the SMJ337A,
e.g., to clean the browser internal state and load webpages.
Finally, a power bank (10,000 mAh, 5.0V, 2.0A) allows to
power the Pi on the go for up to 20hrs.

We installed Figure 4(a)’s setup in a car and performed
experiments at 10 locations within a 25 miles range in North
America, while connected to Mint mobile [28]. At each
location, while stationary, we run the news workload using
Chrome, Brave, and Opera. We perform a single run per
location given that: a) previous experiments have shown low
standard deviation, b) the variance is provided by the different
locations, c) we need to bound the experiment duration (each
run currently takes 30 minutes).

Figure 4(b) shows the CDF of the energy consumption
across 10 locations. The figure further confirms the energy
benefits of adblocking (Brave and Opera) even on a mo-
bile network with variable signal quality, e.g., the median
consumption grows from 92mAh (Brave) up to 131mAh for

Chrome. This is a 30% improvement, similar to what measured
before. As the network conditions deteriorate – causing an
overall increase in energy consumption – Brave and Opera
lower bandwidth utilization allows further reduction (up now
to 40%, 120 vs 200mAh, for Brave). Note that this result is
also a potential lower bound of the saving, given that in our
experiments we synchronize browsers every 30 seconds, i.e.,
faster browsers are forced to wait before loading another page.

To further comment on the latter observation, we perform a
second experiment investigating how fast are pages loaded at
the 10 locations above. To report on performance metrics, we
rely on lighthouse [29]. Specifically, we forward the developer
tool port (9222) from the device to the Rasberry Pi where it is
used by lighthouse to instrument a browser. Surprisingly, we
could not communicate with Opera’s developer tool port, and
we thus omitted it in this test. With respect to the websites
to be tested, we used 4 websites from news and ads-free
workload, respectively.

Figure 4(c) shows per website boxplots of the SpeedIn-
dex [30], the average time at which webpages are rendered,
distinguishing between browsers, and news (on the left) and
ads-free (on the right) websites. With respect to news websites,
the figure shows that Brave (and adblocking in general) offers
savings of seconds, e.g., median SpeedIndex of 2.5 versus
11 seconds for theblaze.com. By discounting the energy
needed during this extra time, Brave would offer an extra 30%
of battery savings, on average. The result is instead reversed
for ads-free websites, where Chrome consistently outperforms
Brave by few hundreds ms and up to 1.5 second.

IV. ATTENTIONDIM

Under bad network conditions a user can spend tens of
seconds waiting for a webpage to load (see Figure 4(c)), and
maybe even give up with no content displayed. Our intuition
is to minimize the screen power consumption during these
wasted times, by simply dimming the screen brightness –
which can save energy on both AMOLED and LCD devices
(Table IV) differently from dark mode (Figure 3(c)). We thus
propose “AttentionDim”, a screen dimming strategy which

6



(a) Portable test-bed. (b) CDF of energy consumption. (c) Boxplots of SpeedIndex per website.

Fig. 4. Performance evaluation in the wild (10 locations within 25 miles) ; Chrome, Brave, Opera ; SMJ337A ; 4G ; News workload.

leverages the browser state, e.g., loading versus content ready,
to control screen brightness.

We motivate this idea by investigating the potential savings
deriving from screen dimming. Table IV shows, for several
increasing brightness values in Android (i.e., 0-250 range) and
corresponding scenarios where they apply, the median current
(mA) measured on both J7DUO and SMJ337A during one
minute displaying a default Android desktop theme. The table
further extrapolates the potential battery savings coming from
full screen dimming, i.e., dropping the screen brightness to
zero, as well as a more conservative strategy we will detail
below. This experiment shows that, even with a conservative
strategy, screen dimming offers potential savings between 17
and 40%, on both AMOLED and LCD-equipped devices.

A. Design and Implementation

The idea behind AttentionDim is to use onLoad(), a
browser event which signals when a page is loaded, as an
approximation of user attention which requires regular screen
brightness. Other “events” are possible, e.g., video buffering,
but requires more complex browser modifications and were
thus left as future work.

AttentionDim is implemented as a module which controls
the screen brightness from the browser. This module currently
sits in ChromeTabbedActivity, i.e., it can be adopted by
all Chromium-based browsers, and it is triggered by the above
events to dim the screen and then restore the brightness when
the event completes. When dimming is triggered, this module
detects whether the user is using auto or manual brightness so
that it can: 1) manually set brightness to the last value when
the event completes, 2) reactivate auto dimming and let the
OS decide the brightness value to be used.

We experimented with several dimming strategies and then
settle for the following one based on feedback received from
our volunteers. When the original screen brightness is low (i.e.,
¡= 100) we opt for an aggressive strategy, i.e., we lower the
screen brightness B to zero. For mid brightness values (e.g.,
150) we set B to half of the original value (50 and 75). We
instead use a fixed B = 150 for high values, since outdoor and
sunny conditions are quite challenging and we need to prevent
leaving users in the dark. Last but not least, we implemented a

setting option and a GUI to allow users to simply (de)activate
AttentionDim as they wish, and to get an estimation of the
current battery savings.

B. Performance Evaluation

We recruited 10 Android users who installed our modified
version of Brave for up to 30 consecutive days totaling about
500 hours of browsing – we urged our volunteers to use
the browser as normal. Figure 5(a) shows the CDF of the
fraction of time spent dimming, per device. Note that some
volunteers shared the same device model: 3 Pixel and 2
ONEPLUS. The CDF is calculated using the beginning of
a dimming event as both the start time of such event and
the end time of the previous non-dimming event. Start/end
timers are also triggered whenever the user closes or (re)launch
the browser. The amount of dimming is very much user and
time-dependent, meaning that some users experience a higher
amount of dimming as well as the dimming duration spans a
broad distribution. Generally speaking, very short dimming
events (e.g., lower than 10%) are rare. Across users, the
median dimming event lasts between a minimum of 30 and a
maximum of 70% of the time.

Figure 5(b) shows the CDF (per device) of the screen
brightness measured during one month. Most brightness values
reported are smaller than 100 (indoor usage). One of the Pixel
devices is an exception since most values reported were quite
high, either because of outdoor or manually set. It has to be

Brightness Scenario Current
(mA, median)

Savings
(Aggr.)

Savings
(Cons.)

0 - 145/108 0/0% 0/0%
50 Indoor 189/130 23/17% 23/17%

100 Indoor 239/157 39/31% 39/31%

150 Cloudy
Outdoor 299/201 51/46% 28/28%

200 Outdoor 379/243 61/55% 21/17%

250 Sunny
Outdoor 417/247 65/56% 28/17%

TABLE IV
POWER SAVINGS FROM SCREEN DIMMING (J7DUO/SMJ337A). AGGR.

STANDS FOR aggressive, CONS. STANDS FOR conservative. BRIGHTNESS IS
DEFINED IN THE RANGE 0-250, AS PER ANDROID.

7



(a) CDF of time spent dimming. (b) CDF of screen brightness. (c) CDF of estimated energy savings.

Fig. 5. Performance evaluation of AttentionDim in the wild ; 10 Android users ; 30 consecutive days and 500 hours of browsing.

noted that this device was also only used for a limited amount
of time, as the sharp CDF suggests. Finally, we combine the
information from Figure 5(a), 5(b), and Table IV to estimate
actual battery savings. Figure 5(c) shows encouraging battery
savings of about 20-30%, which means potentially extending
the battery life by up to one hour.

C. User Study

The previous subsection shows that AttentionDim is ef-
fective in reducing the energy consumption across different
users and devices. This was achieved by opportunistically
lowering the screen brightness, which can have an impact on
the user experience. We asked our 10 study participants to
fill out a form reporting on their user experience while using
AttentionDim. The form asked few simple questions, on which
we report in the following.

We started by asking: from 1 to 5, how would you rate the
overall experience with AttentionDim? The outcome was eight
5s and two 4s (i.e., mean opinion score of 4.8), suggesting
that our participants were overall pleased by AttentionDim.
Next, we asked: in which scenarios, e.g., indoor vs a cloudy
or sunny outdoor, does AttentionDim perform the best and
the worst? Two volunteers indicated that it performs quite
well across all situations they encountered. The remainder
eight volunteers indicate that AttentionDim performs the best
indoor and the worst outdoor. Finally, we asked for feedback
on AttentionDim’s responsiveness, or how quickly was the
screen’s brightness resumed when needed. Most participants
report on AttentionDim lagging, i.e., taking few extra seconds
to resume the screen’s brightness. This was perceived as a
feature rather than a bug: the users reported how, over time,
they used the screen dimming/resuming as an indication that
a page was indeed ready to be browsed.

From this user study, we have identified two areas of
improvement and further investigation. The survey shows that
AttentionDim currently underperforms in sunny outdoors. This
is intuitive given that mobile phone usage in the sun is al-
ready problematic. AttentionDim currently leverages Android’
screen brightness information (an integer in the range 0-255)
to drive its algorithm. This measure is quite coarse especially
for high values, and we thus plan to replace it with data from

the light sensor. This will offer higher accuracy, hopefully
improving AttentionDim’s algorithm in sunny outdoors.

The second observation has to do with AttentionDim’s
slow responsiveness. There are two main causes of the lag
experienced by our users. First, onLoad() is a conservative
page load time metric since it waits for all content to be
loaded, e.g., even tracking scripts which do not contribute to
the appearance or interactivity of a page. Second, Android
requires some delay (depending on the device) to change the
screen brightness. Further, some users might be more impatient
than others and just start scrolling even before some or most
of the content is retrieved.

To increase responsiveness, we could introduce a new
metric, potentially even incorporating the above Android’s
delay. However, this would reduce the energy savings and
introduce other problems, since no metric is perfect [31].
Alternatively, we could abandon page load time metrics and
focus on user behavior, e.g., trigger brightness resumption as
the user interacts with the page. We could even allow users
to explicitly define their own strategy, or offer feedback from
which the algorithm can learn over time.

V. CONCLUSION

This paper has investigated the battery consumption of 15
Android browsers (7 popular and 8 with adblocking features),
3 of the top performing browsers in dark mode, Yandex power
saving feature, and AttentionDim, a novel screen dimming
mechanism driven by browser events like onLoad() which
we have developed. Given the scale of these measurements,
we have also built a browser testing suite which is both
transparent and extensible. Our results show that adblocking
offers significant battery savings (up to 30% on WiFi and 40%
on 4G) which can be further enhanced via dark mode (extra
12%), when applied to whole webpage content and AMOLED
devices. Conversely, Yandex power saving feature resulted
more a marketing stunt than a batter saving solution. We
integrated AttentionDim in Brave – one of the top performing
browsers in our tests – and run a study involving 10 users and
up to 500 hours of browsing in the wild. Our results show that
AttentionDim reduced, on average, the battery consumption by
about 20-30%, with minimal impact on the user experience.

8



REFERENCES

[1] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh,
“Who killed my battery? analyzing mobile browser energy consump-
tion,” in Proceedings of the 21st international conference on World Wide
Web, 2012, pp. 41–50.

[2] A. Albasir, K. Naik, B. Plourde, and N. Goel, “Experimental study of
energy and bandwidth costs of web advertisements on smartphones,” in
6th International Conference on Mobile Computing, Applications and
Services. IEEE, 2014, pp. 90–97.

[3] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao, “Rethinking energy-
performance trade-off in mobile web page loading,” in Proceedings of
the 21st Annual International Conference on Mobile Computing and
Networking, 2015, pp. 14–26.

[4] Y. Cao, J. Nejati, M. Wajahat, A. Balasubramanian, and A. Gandhi,
“Deconstructing the energy consumption of the mobile page load,” Proc.
of the ACM on Measurement and Analysis of Computing Systems, vol. 1,
no. 1, pp. 6:1–6:25, Jun. 2017.

[5] N. Heitmann, B. Pirker, S. Park, and S. Chakraborty, “Towards building
better mobile web browsers for ad blocking: The energy perspective,”
in The 21st ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems, 2020, pp. 146–150.

[6] Browser Share, “Browser Market Share Worldwide,” https://gs.
statcounter.com/browser-market-share.

[7] AdBlock, “Block ads. browse better and safer.” https://getadblock.com/.
[8] UBlock, “The fastest, most-powerful ad blocker.” https://ublock.org/.
[9] Brave, “The browser re-imagined.” https://brave.com/.

[10] Kiwi, “Kiwibrowser, fast and quiet.” https://kiwibrowser.com/.
[11] Opera, “A browser for the real you.” https://www.opera.com/.
[12] Google, “Browse in Dark mode,” https://support.google.com/chrome/

answer/9275525?co=GENIE.Platform%3DDesktop&hl=en.
[13] Yandex, “Power saving mode,” https://yandex.com/support/

browser-mobile-android-phone/economy-mode/energy-saving.html.
[14] M. Varvello, “Cappuccino: Third Party Application Testing for Android,”

https://github.com/svarvel/cappuccino.
[15] Netmarketshare, “Market Share Statistics for Internet Technologies,”

2020, https://netmarketshare.com.

[16] WICG, “User Agent Client Hints,” https://github.com/WICG/
ua-client-hints.

[17] Monsoon Solutions Inc., “High voltage power monitor.”
https://www.msoon.com.

[18] A. Schulman, T. Schmid, P. Dutta, and N. Spring, “Phone power
monitoring with battor,” in Proc. ACM MobiCom, 2011.

[19] Patrick Dubroy, “How many tabs do people use? (Now with real data!),”
https://dubroy.com/blog/how-many-tabs-do-people-use-now-with-real-data/.

[20] E. Zeng, T. Kohno, and F. Roesner, “Bad news: Clickbait and deceptive
ads on news and misinformation websites,” in Workshop on Technology
and Consumer Protection (ConPro). IEEE, New York, NY, 2020.

[21] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and
W. Joosen, “Tranco: A Research-Oriented Top Sites Ranking Hardened
Against Manipulation,” https://tranco-list.eu/.

[22] Fanboy, MonztA, Famlam and Khrin, “EasyList - Overview,” https://
easylist.to/.

[23] Majestic, “Find out who links to your website,” https://majestic.com/
reports/majestic-million.

[24] W. Aqeel, B. Chandrasekaran, A. Feldmann, and B. M. Maggs, “On
landing and internal web pages: The strange case of jekyll and hyde
in web performance measurement,” in Proceedings of the ACM Internet
Measurement Conference, 2020, pp. 680–695.

[25] Hispar, “A top list of web pages; not domains,” https://hispar.cs.duke.
edu/.

[26] Alexa, “The top 500 sites on the web,” https://www.alexa.com/topsites.
[27] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmermann, S. D.

Strowes, and N. Vallina-Rodriguez, “A long way to the top: Significance,
structure, and stability of internet top lists,” in Proceedings of the
Internet Measurement Conference 2018, 2018, pp. 478–493.

[28] Mint Mobile, “Wireless that’s Easy,” https://www.mintmobile.com/.
[29] Google, “Lighthouse, a Tool for Web Developers.” https://developers.

google.com/web/tools/lighthouse.
[30] C. Arsenault, “Speed Index Explained - Another Way to Measure Web

Performance,” https://www.keycdn.com/blog/speed-index.
[31] F. Salutari, D. Da Hora, M. Varvello, R. Teixeira, V. Christophides,

and D. Rossi, “Implications of the multi-modality of user perceived
page load time,” in 2020 Mediterranean Communication and Computer
Networking Conference (MedComNet). IEEE, 2020, pp. 1–8.

9

https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://getadblock.com/
https://ublock.org/
https://brave.com/
https://kiwibrowser.com/
https://www.opera.com/
https://support.google.com/chrome/answer/9275525?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/chrome/answer/9275525?co=GENIE.Platform%3DDesktop&hl=en
https://yandex.com/support/browser-mobile-android-phone/economy-mode/energy-saving.html
https://yandex.com/support/browser-mobile-android-phone/economy-mode/energy-saving.html
https://github.com/svarvel/cappuccino
https://netmarketshare.com
https://github.com/WICG/ua-client-hints
https://github.com/WICG/ua-client-hints
https://www.msoon.com
https://dubroy.com/blog/how-many-tabs-do-people-use-now-with-real-data/
https://tranco-list.eu/
https://easylist.to/
https://easylist.to/
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://hispar.cs.duke.edu/
https://hispar.cs.duke.edu/
https://www.alexa.com/topsites
https://www.mintmobile.com/
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse
https://www.keycdn.com/blog/speed-index

	Introduction
	Methodology
	Browsers Evaluation
	Popular or Adblocking?
	Top Websites Lists
	Power Saving Features
	Experiments in the Wild

	AttentionDim
	Design and Implementation
	Performance Evaluation
	User Study

	Conclusion
	References

