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Abstract—Over the past decades, active measurements have
been used to gain a deep and broad understanding of routing,
latency, packet loss, etc. Unfortunately, typical active measure-
ments are ill-suited for elucidating the performance of individual
application flows due to route changes, load balancing, transient
queues, and other dynamic effects. Recent efforts have identified
in-band measurement, in which probes are injected into an exist-
ing application flow, as a promising approach for gaining insight
into network behaviors that affect application flows. However,
the use of libpcap by these efforts poses significant performance
bottlenecks and is at odds with high-fidelity measurements.

In this paper, we explore a new implementation pathway
for in-band application flow monitoring: the extended Berkeley
Packet Filter (eBPF), which enables safe programs to be run
within the OS kernel. We develop an eBPF-based in-band flow
monitoring tool called ELF that sends hop-limited probes within
an existing flow. We compare the performance of our eBPF-
based approach with the use of libpcap, finding that libpcap
introduces undesirable high variability into the probe emission
process. We illustrate the potential of ELF by monitoring hourly
Network Diagnostic Tool (NDT) throughput measurements to 12
Measurement Lab destinations for one week. We observe that at
least 90% of routers traversed by the in-band probes respond
positively, with no apparent rate limiting. We examine how the
hop-by-hop evolution of network queues is exposed using ELF in-
band probes, illustrate the impact of mid-flow route changes, and
show that load balancing may inequitably affect throughput.

Index Terms—eBPF, application flow performance

I. INTRODUCTION

Active probe-based measurements provide the foundation
for understanding latency, packet loss, routing, available band-
width, throughput, and other characteristics of the Internet. A
great deal of work over the past decades has gone into devel-
oping a variety of active measurement techniques. Ongoing
projects such as RIPE Atlas [14], CAIDA Ark [6] and SLAC
PINGer [13] publish active measurement data that are widely
used to derive insights into Internet performance and behavior.

Unfortunately, explaining or diagnosing the performance of
individual application flows is generally not possible using
typical path-oriented active measurements. For example, an
end-to-end router-level path identified using traceroute may
not be the same path used by an application flow between the
same endpoints due to load-balancing and other effects [16].
Similarly, latency measurements derived from tools (e.g., ping)
may be quite different from latencies that an application flow
experiences along the same end-to-end path [36].

An approach taken by prior efforts to monitor network
properties from the perspective of application flows is known
as in-band measurement, in which probes are injected into
an existing flow. For example, TCP sidecar [38] and service
traceroute [35] introduce into an existing application flow
packets with the same essential characteristics, ensuring that
those packets will follow the same router-level path and will
experience similar network conditions as application packets.
These prior works have focused on measuring the specific
router-level paths of application flows by setting TTLs in out-
going measurement probes (henceforth referred to as probes)
in a similar manner as the traceroute method and collecting
ICMP time exceeded messages [31]. Although latency mea-
sures can also be gathered using these tools, they have used
libpcap (for packet injection and capture) which may introduce
undesired variability in the probe emission process due to
context switching between the kernel and the user spaces,
among other overheads [33]. An alternative approach of direct
implementation within the OS kernel is neither portable nor
sustainable.

In this paper, we explore the use of a new implementation
pathway for in-band measurement: the extended Berkeley
Packet Filter (eBPF) [9]. eBPF is a recent innovation with
good support in the Linux kernel and makes it possible to
embed safe programs at pre-defined kernel tracepoints (see
§ II). Specifically, eBPF makes it possible to perform in-
band flow monitoring safely within the OS kernel, enabling
probes and application packets to be emitted closely spaced
in time. Consequently, the performance (e.g., latency and
loss) experienced by application traffic is highly likely to be
experienced by probes—a key insight used in this work.

Using this insight, we develop a tool called ELF1 (eBPF
teLemetry Framework) for in-band flow monitoring using the
bcc (BPF compiler collection) toolchain [4]. The tool relies
on two eBPF programs in the OS kernel: one uses cls-bpf for
egress packet processing and the other uses XDP for ingress
processing [3], [28]. On the egress path, packets destined
to addresses of interest are periodically cloned, truncated in
size to be of minimum length, and the TTL modified. On
the ingress path, payloads of ICMP time exceeded messages
are matched with probes. Moreover, these probe responses

1Source code for ELF is publicly available at https://github.com/jsommers/
ELF.978-3-903176-40-9 ©2021 IFIP
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are discarded within the XDP component, thus they do not
impose any further load on the measurement host; this is a
distinctive feature of ELF. A Python controller program (in
userspace) coordinates these two eBPF programs and extracts
latency measurements from in-kernel BPF maps.

We show in a set of benchmark experiments that ELF emits
probes (packet clones) closely spaced in time with application
packets, generally less than 20 microseconds apart on Gigabit
Ethernet. We compare these spacings with a libpcap-based
program, which emits probes with higher average spacings
and much higher variability. We also use ELF to trace iperf3
flows in a controlled setting, comparing ELF-gathered latency
measures with those gathered with the standard mtr tool. We
find that ELF accurately captures dynamic hop-by-hop latency.
Although we find that our eBPF-based tool enables much
higher-fidelity measurement than has been previously possible,
the use of eBPF imposes new constraints. For example, probes
cannot be emitted at arbitrary points in time because eBPF
programs at the cls-bpf and XDP tracepoints can only be
invoked in response to the arrival or departure of a packet.

We use ELF to launch Network Diagnostic Tool (NDT) [12]
throughput measurements from 5 Cloudlab [20] locations
to 12 measurementlab.net (M-Lab) destinations around the
world. Using probe rates of no more than 100 probes per
second, we observe that at least 90% of routers traversed
with our probes do no apparent rate-limiting or throttling
of ICMP time exceeded responses. In addition, we find that
the latency measurements gathered using ELF, while noisy,
nonetheless reveal the evolution of router queues along a
path and evidence for congestion. In particular, we observe
evidence for congestion both between service providers and
within service providers. Moreover, due to the relatively high-
resolution measurements, we observe several instances of
flow disruption due to route changes. The nature of our
measurements enables us to show that, depending on the path,
load balancing does not necessarily result in equal treatment of
application flows. Overall, our results indicate that the in-band
flow monitoring capability enabled by ELF can provide a new
level of insight into network flow behavior without requiring
access to intermediate routers.

II. BACKGROUND AND RELATED WORK

In this section, we review work related to our efforts and
provide some background on eBPF its features that are relevant
for network measurement.

A. Prior Efforts and their Limitations

A packet filter (PF) is a kernel agent which provides
unfettered access to raw (network) packets by exposing them
to the userspace. Several PFs were proposed in the 1980s
including Network Interface Tap [27], DEC’s Ultrix PF [8],
and CMU/Stanford PF (CSPF) [29]. In 1993, McCanne et al.
identified several performance bottlenecks with these efforts
and proposed BSD PF (BPF) [33]. For example, tcpdump
uses BPF-based filtering and uses the libpcap library to attach
to a network tap/interface to capture and analyze the network

traffic. Building on these earlier efforts, in 2013 extended
BPF (eBPF) [9] was proposed with a new virtual machine
model, a vastly expanded instruction set, new kernel hooks,
and other new facilities. The programmability enabled by
eBPF resembles other efforts in on-device computation and
software-defined networking, e.g. [21], [19], [42].

Many complementary approaches have been taken to re-
duce interrupt load and overheads of kernel-user-mode con-
text switches that arise from using libraries like libpcap.
For example, coalescing interrupts and “batching” packet
arrivals [34] and zero-copy buffering can effectively reduce
system load [22]. A more extreme approach is kernel-bypass,
in which a special kernel-level driver passes packets directly to
a user-mode program, avoiding the packet processing pipeline
in the OS kernel and overheads of its generality. The recent
DPDK [7] system takes this approach. Interestingly, the eX-
press Data Path (XDP) component of eBPF has been described
as an in-kernel competitor with DPDK in terms of high-
throughput packet performance [28], [3].

Related to the in-band measurement approach taken in ELF,
the notion of injecting measurement probes into an existing
application traffic stream has been explored primarily in the
context of identifying the interface-level network paths of
application flows [38], [35]. The recent work of Ahmed et
al. uses in-band measurement in a more general way to im-
plement available bandwidth estimation within packets of the
application flow [15] but their approach shares the drawbacks
of approaches using libpcap since probe packets are emitted
from userspace. Lastly, the per-hop latency measurements
collected using ELF are similar to the time-series latency probe
(TLSP) of Luckie et al. [30]. The key difference is that our
measurements necessarily follow the same interface path as an
application flow, thus any load-balancing effects are explicit
and known. Our work also has similarities to Tulip [32]. The
key differences are that Tulip measurements are “out-of-band”
and measurement packets may be blocked and/or not follow
the same link-level path as application packets, and that it is
implemented in userspace with libpcap.

To the best of our knowledge, no prior research efforts
leverage eBPF to perform active network measurement, al-
though there are example programs that perform basic passive
measurement tasks [2], [5].

B. eBPF Overview

The Extended Berkeley Packet Filter (eBPF) is based on
the earlier Berkeley Packet Filter, which was designed as a
simple virtual machine instruction set specifically for packet
filtering [33]. The earlier BPF is now being referred to as
“classic” BPF to distinguish it from its modern successor [3].
Development of Linux kernel eBPF facilities has continued at
a steady pace since its first appearance in December 2014; a
history of versions and main features added is maintained by
the BPF compiler collection (bcc) project [4].

eBPF expands greatly on the notion of an in-kernel virtual
machine instruction set. In particular, the VM instruction set
has been broadened and generalized for a variety of tasks
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(i.e., not just packet filtering). Upon loading into the kernel,
programs are verified to ensure that they (1) cannot have
invalid memory references and (2) all code paths terminate.
Termination is verified by disallowing loops that cannot be
fully unrolled and by evaluating the control flow graph. The
instruction set resembles that of modern processors, which
facilitates just-in-time compilation to the host architecture
which is done by default.

eBPF programs are invoked in response to different kernel
events. The eBPF program type restricts the range of kernel
hooks where a program can be installed. For active network
measurement, the two most relevant program types are eXpress
Data Path (XDP) [28] and Linux’s tc (traffic control) layer [3].
The XDP program type can only be invoked upon packet
ingress; the program is invoked in the device driver before
any parsing or host processing. tc eBPF programs, on the
other hand, can be involved either on packet ingress or egress
and operate on parsed packets (Linux sk buff). For both
program types, eBPF helper functions facilitate packet manip-
ulation, obtaining timestamps, etc. These calls are translated
into direct in-kernel function calls upon JIT compilation.
Figure 1 shows the general architecture of where XDP and
tc eBPF programs reside in the kernel.

Fig. 1. Diagram showing primary locations where eBPF programs can be
executed (XDP and tc), as well as how a user-space control program (via
bcc) interacts with eBPF programs and in-kernel data storage (BPF maps).

Since eBPF programs are invoked only in response to
packet arrivals (on ingress for XDP or ingress/egress for tc),
there are additional facilities for persistent data storage and
access within the kernel: BFP maps. In-kernel maps such
as hashtables, arrays, and longest-prefix match tries can be
accessed by programs running in user mode, and there are also
per-cpu variants of some BPF map structures, enabling lock-
free access. Low-level eBPF programming can be difficult,
largely due to the complex API and safety requirements. There
are several projects to create simplified front-ends for the
“raw” eBPF C-based API, such as bcc [24]. In our work, we
use the bcc (BPF Compiler Collection) tools, which enable
the creation of a user-space control program in Python. bcc
has interfaces for compiling and installing eBPF programs
(including XDP and tc programs), interacting with in-kernel
BPF maps, and collecting kernel debug information.

Because of the opportunities afforded by safe, in-kernel
packet processing, eBPF is already making an impact in
operational networks. For example, it has been reported that
Facebook has 40 eBPF programs active on every server in
their infrastructure and that Netflix runs 14 eBPF programs
on every one of their Amazon EC2 instances [25]. Moreover,
a number of networking projects leverage eBPF facilities, e.g.,
[18], [17], [44]. An excellent compilation of eBPF resources
and projects that use eBPF is available on GitHub [1].

III. DESIGN AND IMPLEMENTATION OF ELF

In this section, we describe the design and implementation
of an eBPF-based in-band active measurement tool called ELF.

A. Design Approach: In-kernel In-band Measurement

The main idea of our approach is to create measurement
probes by periodically cloning application packets, modifying
the TTL/hop count, truncating them in size, and injecting them
into the application flow. The probes thus have the same 5-
tuple (source/destination addresses, protocol, and source/desti-
nation port numbers), ensuring that they will follow the same
router-level path as the application flow and bypass operational
and management policies of WAN operators.

Prior work in in-band measurement [38], [35] has focused
on measuring the specific router-level paths of application
flows by setting TTLs in outgoing probes in a similar manner
as the traceroute method and collecting ICMP time exceeded
messages [31]. Although latency measures can also be gath-
ered using these tools, they have used libpcap (for packet
injection and capture) or similar means which introduces
undesired variability in the probe emission process due to
context switching between the kernel and the user spaces,
among other overheads [33]. Similarly, the approach of [15]
requires a hybrid user-/kernel-space approach which intro-
duces variability into the measurement process and undesirable
context-switching overhead. In our approach, we aim to solve
these problems as well as to improve both measurement
scalability and programmability.

Novelty of our Approach. Compared to prior in-band
measurement efforts, our approach is novel: ELF is imple-
mented with eBPF and thus its core functionality resides in
the OS kernel, enabling probes and application packets to be
emitted closely spaced in time, e.g., within 20 µsec of appli-
cation packets. Consequently, the performance (e.g., latency,
and loss) experienced by application traffic is highly likely
to be experienced by probes—a key insight and feature of
ELF. Furthermore, as we discuss below, ICMP time exceeded
responses are eliminated within the XDP component before
any processing by the OS kernel, thus reducing the impact
on the measurement host. These reasons are why we argue
that ELF is well-suited for measurement and diagnosis of
application flow performance.

B. ELF Implementation Details

1) General Operation: ELF is implemented using bcc [4].
Given a network interface to use and destination hostnames



of interest, a Python control program uses bcc to compile
and install eBPF programs for egress and ingress packet
processing. Egress handling and sending probes are done
within the tc subsystem and ingress handling is done within
XDP. Because tc eBPF programs can only be invoked in
response to outgoing or incoming packets, probe emission is
dependent on the presence of application-level traffic. In our
ongoing work, we are examining the possibility of using more
generic events to trigger probe emission, which will require
modifications to the Linux kernel eBPF subsystem.

When ELF is started, the user can specify a probing rate,
but this is, in effect, a maximum probe rate. The probe rate
r can be specified as per-hop, in which case ELF attempts to
meter probes out so that the rate observed at each hop along
a path ≈ r; it can also be specified as global, in which case
the probe rate observed at an individual hop will be ≈ r

pathlen .
There are several BPF maps used to track destinations of

interest, manage information about destinations, and provide
temporary storage for measurements. One map associates each
destination IP address (v4 or v6) of interest with a unique
integer identifier; this integer is used as an index into a BPF
array of structs, where each struct contains a nanosecond
timestamp of the most recent probe sent to a given destination,
an estimated number of hops to the destination (inferred from
the TTL/hop count in packets received from the destination),
the next probe sequence to use, and the next hop number
toward the destination to probe. A separate BPF map stores
information about probes that have been sent, but for which re-
sponses have not yet been received. Lastly, another map stores
information about received probes, including timestamps, IP
address of the responding host, received TTL/hop count, etc.
This last map is a per-cpu map so that no locks are required
to update the map as probe responses are received.

2) Probe Send Path: On packet egress, a lookup in the
destination IP address BPF map is performed to check whether
a probe should be emitted to satisfy a configured probe rate. If
a probe should be emitted, ELF egress-handling code stores the
integer BPF array index associated with the destination in the
skb metadata and control is handed to ELF protocol-specific
(ICMP, TCP, UDP) code. The packet is then cloned and
emitted. As a result, the original unmodified application packet
is sent on its way soon after identifying that a probe should be
created. ELF code then truncates the packet clone in size to
be of minimal length (e.g., 40 bytes for IPv4 TCP) in order to
minimize measurement overhead, and the IP TTL/hop count
is modified in such a way as to cycle over each hop between
the source and destination. Also, checksums are recomputed,
and a sequence number and a nanosecond-scale timestamp
are recorded and stored on another map. Note that ELF code
inspects the skb metadata early on to determine whether it
has been set with a destination identifier; if so, this packet is
ignored to avoid re-cloning. Although ELF currently truncates
all packets by default, we plan to make this capability optional
for users who wish to use the full application packet as a
measurement probe (albeit with an appropriately set TTL/hop
count). To enhance programmability, we are also creating the

capability for a user to provide additional eBPF code to modify
the probe packet contents in any desired way, thus overriding
built-in functionality from ELF.

3) Probe Receive Path: Within the network, ICMP time
exceeded messages are typically generated at router interfaces
where TTLs expire, and these messages are received in the
ingress (XDP) component where a timestamp is recorded and
measurement results are added to the per-CPU BPF map. For
incoming ICMP time exceeded messages that match an outgo-
ing probe, the message is, by default, dropped within the XDP
processing path so as not to impose any additional processing
load on the host. This behavior (to drop incoming ICMP time
exceeded messages) is configurable; as a debugging aid, it
can be helpful to observe those packets from other programs.
Moreover, it is important to note that this ability to eliminate
measurement traffic before it enters the OS networking stack is
a distinct advantage of eBPF-based measurement over using
libpcap and similar approaches. As long as the application
that was given to the Python control program continues to
run or until interrupted, paths to destinations of interest will
continue to be monitored. Periodically, the Python control
program reads result data from BPF maps and appends these
data to a CSV file. To further enhance programmability, we are
creating the capability for a user to provide additional eBPF
code to select packet contents of interest for extraction from
the received ICMP time exceeded message.

4) Overheads: Lastly, we note that eBPF programs, before
being installed at a kernel hook, are compiled to eBPF
bytecode then JIT translated into machine code for execution.
The bcc framework enables the machine code to be shown
at installation time for debugging purposes. On the packet
egress path, there are fewer than 100 instructions executed
to determine whether a packet should be cloned, and a total
of 814 instructions in the egress path-handling code (some of
these instructions are calls to access/update BPF maps or are
calls to BPF helper functions). On the ingress path, there are
50 instructions necessary to determine whether an incoming
packet is an ICMP time exceeded response of interest; a
total of 657 instructions are on the ingress code path. These
program sizes (which have not been carefully optimized) —
along with the safety guarantees that come with eBPF —
provide concrete support for the use of eBPF in network
measurement and give context for results from experiments
we describe below.

An alternative design we considered is direct implementa-
tion in the kernel, which has been employed in prior work
(e.g., [39]). While such an approach has lower overhead
by virtue of avoiding user/kernel boundary crossings, the
implementation would be tightly coupled to specific kernel
versions and fundamentally non-portable. A user-space imple-
mentation (cf. [15], [35]) using libpcap or similar would be
portable, but as we discuss in the next section, the performance
cost is too high for even modest packet rates. The eBPF
approach we chose and advocate strikes a balance between
high-performance and implementation using a stable and, in



theory, portable API.2

IV. EVALUATION

A. Laboratory Experiments

In this section, we evaluate the performance of ELF in
a controlled laboratory setting. We first describe the results
of experiments to compare timing overheads of using eBPF
for in-band active measurement with a baseline libpcap-based
approach. We then examine hop-by-hop latency measurements
collected using ELF.

1) Evaluation of Overheads: As noted above, the typical
approach taken in prior work on in-band active measurement
has been to create a userspace program that uses libpcap to
inject packets into an existing flow [38], [35]. To compare
timing overheads, we created a simple experiment setup in
which we could control input packet rates and observe the
performance of libpcap and eBPF. We wrote programs using
libpcap and eBPF/bcc to clone every k = 100th UDP packet3.
Specifically, each program clones an incoming UDP packet,
sets the TTL in the clone to a fixed low value, and recomputes
the IP checksum before forwarding the clone to the destina-
tion. We directly connected three hosts in a linear A–B–C
arrangement using Gigabit Ethernet. Host A was configured to
generate small packets (60 bytes, including Ethernet header) at
a configurable rate using the Linux pktgen kernel module [43].
Host B was configured to use either the libpcap or eBPF
cloning program. Host C was configured with an XDP program
that received incoming packets and timestamped them (at
nanosecond scale).

Our results from these experiments (not shown in detail
due to space constraints) reveal that for the eBPF program,
the median time difference between a packet and its clone
is below 20 µsec for all offered loads and there is little
variability in the differences. For the libpcap-based program
and the lowest offered packet rates (below 32 kpps) the median
time difference between a packet and its clone is also low
(≈ 20 µsec), but things change at 32 kpps and above. With
modest offered packet rates (≥ 32 kpps) for the libpcap-based
program, although the median spacing difference between a
packet and its clone remains low, there are increasing levels of
packet loss, and spacing variability also significantly increases,
e.g., at 32 kpps the 90th percentile is 90 µsec and the
variance is 55 µsec for libpcap compared with 21 µsec and
0.115 µsec, respectively, for eBPF. Since these programs were
designed to clone every 100th packet, the 32 kpps offered load
should result in a probe rate of merely 320 packets/sec on an
otherwise idle host, thus any packet loss is surprising. Even
more surprising is that for the libpcap experiments with offered
loads of 32 kpps and above, we observed some cloned packets
to arrive before the original packet. In no instances did this
occur with the eBPF program since it was not subject to the

2We note that although the Linux kernel is the context for many of
the advances in the eBPF landscape, there is also an implementation for
the FreeBSD kernel as well as platform-independent implementations in
userspace [1].

3This was an arbitrary choice; our results were the same for other k.

same scheduling effects as a userspace program. Moreover, our
observations were similar for multiple different host systems
and networking hardware setups, thus these limitations appear
to be fundamental to libpcap. We conclude that while libpcap
is sufficient for collecting router-level path information about
application flows, it is inadequate for measurement of delay at
hops along a path or collection of other performance measures.

Fig. 2. Hop-by-hop latency measurements for two configurations of controlled
lab experiments. Latency measurements computed from ELF and mtr are
shown for two intermediate hops of each experiment.

2) Evaluation of Hop-by-Hop Latencies: In another set
of controlled laboratory experiments, we evaluated the per-
hop latency measures collected by ELF. We used a linear
topology, with Linux hosts directly connected in an A–B–C–
D–E arrangement. On links B–C and C–D we used the Linux
traffic control (tc) subsystem to impose one-way delays (in
each direction) of 20 milliseconds, leading to a round-trip time
(RTT) of 80 milliseconds between hosts A and E. On host E
we ran an iperf3 [10] server, and on host A we ran an
iperf3 client along with ELF to inject measurement probes
in the iperf3 packet stream. For iperf3, we used 4 parallel
flows and ran 60-second experiments with the primary flow of
traffic from A→E (“upload”) as well as with the primary flow
of traffic from E→A. Additionally, we introduced cross-traffic
in 3 different configurations: (1) on link B-C, (2) on link C-D,
and (3) on both links B-C and C-D. Lastly, we also launched
the standard mtr tool [11], which combines functionalities of
traceroute and ping, on host A to collect continuous (every
second) ICMP-based traceroute measurements along the path
to host E. We note also that the Linux hosts in this setup used



the default TCP CUBIC congestion control.
Figure 2 shows results from two of the 8 experiments we

ran. In these experiments, ELF was configured to emit probes
at most every 10 milliseconds (100 probes/sec)4. Note that
with this choice of probe rate, the measurement overhead is
an extremely low 32 kb/s5. The top plot of Figure 2 shows
latency measurements collected from ELF and mtr for hops
2 (host C) and 3 (host D) without cross-traffic and with the
primary direction of traffic flow being A→E. We observe in
the figure the baseline 40 milliseconds RTT to host C (hop 2)
and 80 milliseconds RTT to host D (hop 3). We also observe
substantial additional latency due to packet queuing which
happens overwhelmingly at hop 2. Interestingly, we observe
the cumulative effect of latencies on probes that expire at
hop 3, i.e., latencies measured to hop 3 ≈ 80 milliseconds
+ queuing delay at hop 2. Lastly, we also observe that the
ELF probes, which are TCP packets because of the transport
protocol used with iperf3, and the mtr (ICMP) probes are
nearly identical.

The bottom plot of Figure 2 shows results from an exper-
iment where the primary direction of traffic is E→A, with
cross-traffic only on the C-D link. We again observe that both
ELF and mtr measurements are nearly identical. We further
observe that with cross-traffic only on the C-D link that latency
measurements for the B-C link are largely at the minimum
RTT of 40 milliseconds. There is also an interesting event at
about 47 seconds into the trace when the end-to-end iperf3
flows go into timeout and loss recovery and a burst of packets
are subsequently released during slow start, causing a short-
lived queue at hop 2. The results shown in these plots provide
context for per-hop queuing that we observe in our wide-area
experiments, described below, and relate directly to our goal of
collecting fine-grained performance measures for diagnosing
application flow performance.

B. Internet Experiments

In this section, we describe a week-long experiment in
which we monitored flows created using NDT6, which is in
use by M-Lab [12] and has been used in recent studies of the
Internet congestion [40], [41]. We focus on particular examples
that illustrate how high-fidelity in-band measurements can help
in interpreting and contextualizing flow performance.

1) Data collection: We collected a week-long data set be-
tween 2 March–9 March 2020 using NDT in conjunction with
in-band flow measurements. For each data set, we launched
the NDT client from a host in one of 4 CloudLab data
centers [20] (Utah, Wisconsin, Clemson, and Paris) as well
as a fixed university location in the USA. The NDT client
connected to 12 M-Lab server locations distributed across
the world. Specifically, we used M-Lab servers in Auckland,
New Zealand; Amsterdam, Netherlands; Dallas-Fort Worth,

4Again, this was an arbitrary choice; we used it to be consistent with our
wide-area Internet experiments described below.

5Each probe packet is 40 bytes, not including layer 2 headers.
6We do not claim that NDT is ideal for throughput measurement; we use

this tool simply to generate longer-lived TCP flows across the wide-area.

TX, USA; Dublin, Ireland; Miami, FL, USA; New York,
NY, USA; Nairobi, Kenya; Seattle, WA, USA; Singapore;
Toronto, Canada; Vancouver, Canada; and Vienna, Austria.
Measurements to each M-Lab location were collected in series
every hour. For each experiment to each location (168 for each
location and from each of the 5 launch sites), we stored the
output of NDT as well as the in-band probe data from ELF.

The NDT application creates several flows over the span of
an individual test. We note that many paths between the five
client sites and the various M-Lab servers have some form of
load balancing. Because ELF creates probes (packet clones)
based on a destination IP address and a maximum probe rate,
all flows for a given test are monitored. The CSV data file
created by the Python control program indicates TCP ports,
etc. to disambiguate specific flows that are monitored. For all
experiments, ELF was configured with a maximum probe rate
of 100 probes/sec per hop; as noted above this choice of probe
rate leads to a measurement probe rate of 32 kb/s per hop.

In addition to the week-long data set, we collected measure-
ments using different settings of maximum probe rate, and
with a broader set of NDT servers. Moreover, we collected
data from experiments in which we ran the NDT client with
ELF followed by running NDT alone, to evaluate whether
the probes had any measurable impact on throughput, flow
completion times, etc. Although we do not show detailed
results due to space limits, we found no statistical differences
between the NDT output with or without in-band monitoring—
an observation consistent with results observed by the authors
of service traceroute [35] and flowtrace [15].

2) Router Responsiveness: We first comment on how re-
sponsive routers are to hop-limited in-band probes with ICMP
time exceeded messages since ELF relies on receiving these
packets. Our results (not shown in detail due to limited space)
vary according to the site from which measurements are
launched. For the Wisconsin CloudLab site, for example, only
about 5% of emitted probes lack responses, whereas for the
university site there are no responses for about 27% of emitted
probes (the first-hop router, within the university network, rate-
limited ICMP responses and was responsible for many of these
non-responses). Across all sites, at least 90% of all routers
observed respond without any apparent throttling of probes or
probe responses.

Overall, our results are similar to those of Ravaioli et
al. [37]: low levels of rate-limiting with probe rates that we
use. We expect that, similar to Ravaioli et al., we would see
higher rates of non-responses with higher probing rates and
plan to investigate this in detail in future work. On the whole,
our results indicate that an in-band measurement approach is
viable in the wide area for collecting fine-grained performance
measurements for application flow diagnosis.

3) Evaluation of Hop-by-Hop Latencies: In Figure 3 we
show hop-by-hop RTT latencies measured using ELF between
2 different NDT client sites and different M-Lab servers.
Interestingly, we observe increasing delays at different hops,
which we attribute to the growth of router queues as the TCP
flow increases its sending rate; c.f., Figure 2. For the top plot



Fig. 3. Evolution of hop-by-hop round-trip times measured using ELF in-
band probes. Top plot shows results for one NDT upload flow between the
Paris Cloudlab site and the Vienna, AT M-Lab site; bottom plot shows one
NDT download flow between the Wisconsin Cloudlab site and the Dublin, IE
M-Lab site.

of Figure 3, which shows results from an outbound/upload
flow between the Paris Cloudlab site and an M-Lab server in
Vienna, AT, there are four networks traversed by the flow. We
observe prominent queuing delays at hop 2 of≈ 8 milliseconds
at maximum, which is within Universite Pierre et Marie Curie,
and the last hop before traffic enters the Parisian district
network for research and education. We infer that this flow
is largely constrained by congestion in the network, close to
the traffic source. Similarly, the bottom plot shows results for
an inbound/download flow between the Wisconsin CloudLab
site and an M-Lab server in Dublin, IE. We observe in the
plot that for the first 4 seconds of the flow’s lifetime, it
is likely constrained by TCP rwnd since per-hop latencies
remain relatively flat. After time 236, however, we see a
steady increase in delay at hop 3 (which is the last hop within
the University of Wisconsin network before Internet2) which
suggests an in-network constraint on throughput.

RTT measurements gathered using hop-limited probes are
fairly well understood to be quite noisy (e.g., see [23], [37],
[26]) but details in the plots of Figure 3 strongly indicate that
the measured latencies are not simply noise. In particular, we
observe that inflated latencies at one hop have an accretive
effect on latencies observed at later hops, similar to what we
see in the controlled lab experiments in Figure 2. For example,
both plots of Figure 3 show that inflated latencies observed at
one hop cause similarly inflated latencies at later hops (e.g.,

hop 2 on all later hops in the top plot).
Moreover, it has been pointed out in earlier work, e.g., [23],

that the timescale of noise relative to RTT is critical. In partic-
ular, both of these prior works observed that in practice, noise
may not have a significant effect on conclusions drawn from
tools such as pathchar. Nonetheless, we are investigating
methods for quantifying the effects of noise in our ongoing
work, and are also looking at methods for automatically
identifying the location of congestion (i.e., which hop along
a path) over the lifetime of a flow, noting that that location
may change over time. Further, we note again that the RTT
measurements collected using ELF bear similarity to the Time
Series Latency Probe (TLSP) method of [30], with two key
differences: TLSP targets a particular pair of interfaces along a
path, and the probes are emitted “out of band”. Because of the
out-of-band nature of TLSP, it may not be possible to relate the
TLSP measurements with the behavior of an application flow
due to load-balancing effects and the possibility that ICMP
probes take a different path than application flows.

4) Observation of Route Changes and Load Balancing Ef-
fects: Although we do not show detailed results, detailed hop-
by-hop measurements from our wide-area Internet experiments
with ELF revealed other important performance impacts. First,
we observed several interdomain route changes while NDT
throughput experiments were in progress. These mid-flow
route changes each caused statistically significant throughput
drops. Second, because ELF in-band flow measurements en-
able the identification of the interface-level paths followed
by individual flows, we can directly compare performance
differences that may result from uneven load-balanced paths
to the same destination. For example, between the Clemson
CloudLab client and the Dallas-Fort Worth, TX M-Lab site, we
found statistically significant performance differences across
the four observed load-balanced paths (each of equal length in
terms of hops). For each of these observations, an application
would observe some change in throughput, latency, or packet
loss but be oblivious as to why the observed changes were
occurring. With information from ELF, however, applications
could potentially make adjustments to avoid or appropriately
react to network impairments.

V. SUMMARY AND FUTURE WORK

In this paper, we describe and evaluate ELF, an Extended
Berkeley Packet Filter (eBPF)-based active measurement tool.
ELF periodically clones application packets to produce hop-
limited probes along the same path as application flows. We
compare our in-kernel eBPF approach with a libpcap-based
approach, which has been used in prior work, finding that the
libpcap approach can introduce undesirable high variability
into the probe emission process. We evaluate ELF in a labo-
ratory environment and use it to monitor hourly NDT through
tests to 12 Measurement Lab servers over the span of a week.
We analyze the data collected and show that at least 90%
of routers traversed by our probes respond to the hop-limited
probes with no apparent rate limiting. We illustrate how the
evolution of network queues can be tracked with our in-band



measurements, and investigate the impacts of mid-flow route
changes and load-balancing on throughput.

We believe that ELF and the new approach it takes opens
up new areas of inquiry in active network measurement and in
our ongoing work we are continuing to enhance and evaluate
it. In particular, we intend to investigate the scaling properties
of ELF as the number of destinations grows. We also plan to
examine ways to enhance programmability and user control of
ELF, as well as to revisit the efforts of Govindan and Paxson
to examine delays in ICMP packet generation at routers [23]
to better understand how to reduce or eliminate noise in the
latency measurements.
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