
Overcoming the Sorrows of the Young UDP Options
Raffaele Zullo, Tom Jones, Gorry Fairhurst

University of Aberdeen, UK
{raffaele, tom, gorry}@erg.abdn.ac.uk

Abstract—A recently proposed extension adds support for
options to a UDP datagram creating an options area after the
UDP payload. This leverages redundancy between IP payload
length and UDP length. The area carries per-message options,
encoded in a way that resembles TCP Options. This design is
impacted by the way the UDP checksum is processed. We evaluate
how implementations calculate the UDP checksum and unveil an
underlying level of ossification that was silently affecting UDP.
We demonstrate a range of schemes that result in a range of
pathologies, and reduce the expected success for deployment. We
detail the extent of each of the issues discussing their genesis and
their implications, and describe an approach to neutralize the
most widespread pathology. Our findings show how this change
can overcome the major obstacles to deployment and significantly
enhances the chances of adoption of the new extension.

I. INTRODUCTION AND BACKGROUND

The User Datagram Protocol (UDP) [1] is a widely used
layer-4 protocol characterized by a minimal set of transport
services [2] and a fixed-length header. UDP supports a wide
range of applications and newer transport protocols have been
implemented on top of UDP by using UDP as substrate (e.g.,
[3]). Edeline et al. investigated the potential for new transport
protocols built atop of UDP compared to TCP [4].

Although UDP has no room for options or extensions, trans-
port options are defined for many IETF transport protocols,
including TCP, SCTP and DCCP. These all use options to
provide flexibility in protocol design and facilitate evolution by
addition of features to a protocol after its initial development.

UDP-Lite [5] extended UDP to support for applications that
can tolerate payload corruption. It uses a different IP protocol
number and leverages the difference between the IP packet
size and the UDP datagram size to assigns the bytes after the
UDP payload to an area not protected by a checksum.

A. Deploying New Methods Across the Internet

Deployment of new protocols, new options, and new ex-
tensions to protocols have been shown to be constrained by
network devices on path that have implemented all or a part
of a transport protocol specification. When network devices
rely on the presence of a header field or the semantics of
specific header information, this can lead to ossification where
an endpoint has to supply a specific header to receive the
network service that it desires.

Ossification is also an intra-protocol process: while TCP
has been successfully extended with options to increase the

maximum receive window, timestamps, and selective acknowl-
edgements, more recent extensions are facing deployment
difficulties. TCP Fast Open has encountered obstruction by
network devices built to enforce the original handshake re-
quirements. This impairment is not related to the options
mechanism itself, but to the nature of the new introduced
functionality.

UDP itself is not immune from ossification. One example
is the amendment of the original IPv6 specifications to allow
endpoints to use a zero UDP checksum (to enable tunnel trans-
ports that carry an already checksum-protected packet) [6] [7]:
these datagrams can still face interference by network devices.

There is a need to evaluate interference due to existing
network devices when evaluating a new protocol or extension.
Tools such as Pathspider [8], Tracebox [9], Mobile Trace-
box [10], Copycat [4] can help assess deployment issues.
Learmonth et al. used large-scale measurements to explore
traversal of IP packets setting the ECN field [8]. Honda et
al. examined the extent to which it is still possible to use
options mechanism to extend TCP [11], while Hesmans et
al. focused on the lessons learned from previous options to
guide the design of future extensions [12]. Zullo et al. analysed
limitations due to middleboxes in cellular and Wi-Fi networks,
highlighting adoption of extensions and performance tuning
proceed at a slower pace compared to user devices [10].

B. UDP Options

UDP-Options (UDP-O) [13] is a work in progress within
the Internet Engineering Task Force. This proposal seeks to
define an extension method to UDP that adds the possibility
to include options in UDP datagrams [13]. The format for
a UDP-O datagram, shown in Fig. 1, uses the area after the
payload, sometimes known as the surplus area, to carry a set of
per-message options. Each option is encoded as a type length
value, similar to the encoding of TCP Options. The support
for options can enable evolution in the face of the present
ossification of the UDP transport.

The options added to a UDP datagram can be either local
to a message or affect a stream of messages in a soft-state
manner [13]. At the receiver, options are either consumed by
the stack or are passed out-of-band to the upper layer protocol.

UDP-O can provide common parameters relating to indi-
vidual datagrams and communicate remote parameters, such
as the receiver maximum datagram size, or support for an
optional transport function. Options can signal metadata about
a stream to the network path, such as loss reports, RTT, and978-3-903176-27-0 c© 2020 IFIP

IP Payload Length

UDP Length Surplus Area

IP Header UDP Header UDP Payload UDP Options

Fig. 1: UDP Options area.

ECN feedback. This can be valuable even when the datagram
payload is encrypted [3] opening the possibility of common
tools for on-path devices to analyse the provided metadata.
UDP-O can provide generic support for higher level transport
features such as keep-alive and probe packets (e.g. to facilitate
NAT traversal), or innovative methods such as Firewall and
Service Tickets (FAST [14]) to assist in identifying flows (e.g.,
connection tracking by firewalls). This alleviates the burden of
implementing each function in every application. This could,
for example, provide the probing method [15] needed to
discover the maximum size of UDP datagram that can be sent
across a path, enabling UDP Datagram Packetization Layer
PMTU Discovery (DPLPMTUD) [16].

A fragmentation option [13] can provide the necessary sup-
port for applications that need to send datagrams larger than
the PMTU, by enabling transport-layer segmentation. This
avoids the pitfalls of IP-layer fragmentation [17] and could
benefit DNSSEC by enabling transport of large responses [18].

An open source UDP-O implementation on top of the
FreeBSD Operating System is available along with imple-
mentations for common network testing and evaluation tools,
including iperf, packetdrill and wireshark [19].

Despite the simplicity of the UDP-O mechanism, we recog-
nised a need to examine and measure the Internet traversal
properties of packets that carry UDP-O datagrams. In this
exploration, we demonstrate the existence of various patholo-
gies, including ossification resulting from network devices
that check the value of the IP Payload length, or have
interpreted the length field in different ways. We also reveal
cases where the transport checksum has been miscalculated.
In understanding traversal pathologies, we have been able to
propose a method to avoid a significant proportion of cases
where traversal fails and propose a checksum compensation
option (CCO) that can significantly improve deployability.

The remainder of this paper is organized as follows: Sec. II
describes the UDP-O format and current limitations to deploy-
ment; Sec. III describes the tools and methodology; Sec. IV
analyses the measurements; Sec. V evaluates the impact on
deployability; and finally, Sec. VI concludes this paper.

II. UDP OPTIONS PATHOLOGIES

This section describes a preliminary analysis of networks
and paths to discover the set of path pathologies that will be
encountered when sending datagrams with UDP-O.

We tested a set of edge and core networks, exploring paths
to servers that use well-known UDP protocols, such as DNS

TABLE I: UDP Options path pathologies observed.

Pathology Notes

UDP Checksum validation

Correct UDP Checksum
IP Payload Checksum
3rd Checksum
4th Checksum

Length consistency check UDP Length = IP Payload Length

and STUN. We use this to analyse UDP-O datagram traversal
and delved into the anomalous cases using middlebox location
techniques to detect interfering devices [9]. This investigated
the root cause of interference by manipulating packets to send
probes to help understand whether datagrams setting UDP-O
were discarded or only forwarded under specific conditions.

The set of discovered pathologies is summarized in Table I.
Note that IPv4 packets also compute a network-layer check-
sum. This checksum did not limit traversal for UDP-O because
it is computed on the IP header bytes and the IP Total Length.

A. Construction of the UDP-O Checksum

To understand the pathologies, one needs to first examine
the method used to check the integrity of UDP datagrams. The
transport checksum [1] computes the 16 bit one’s complement
of the one’s complement sum of all 16 bit words in a pseudo
header and the datagram payload [20]. The length of the
payload corresponds to the transport header Length field.

An alternative scheme that calculates the same checksum
could use the IP Payload length obtained by the IP Total
Length minus IP Header Length (or, for IPv6, as Payload
Length minus the length of the extension headers, if present),
since for a regular UDP datagram (with no options) this results
in the same size as the UDP Length. However the outcome
of this second scheme is different when the IP length field
reflects the presence of options. A scheme that uses the IP
Payload length instead of the UDP Length, will fill the pseudo-
header with the wrong value and the checksum could then be
computed over all IP Payload bytes. Therefore, despite the
simplicity of using the UDP checksum, an ambiguity exists
in the role of the two length fields when this is used with
UDP-O. This can have a serious impact on the probability of
successful traversal across a path, and hence the deployability.

B. Pathologies from Evaluation of the UDP-O Checksum

A first sign of a potential issue was found in a seemingly
innocuous bug detected in FreeBSD, where the checksum
lengths were based on the IP length. This was fixed during
our UDP-O implementation [21]. The range of issues is much
broader that just this length mismatch.

To understand the range of traversal pathologies, it is impor-
tant to recognise that the length of a UDP datagram appears
as an input three times during computation of the transport
checksum (it is used in the UDP header, in constructing the
pseudo-header, and to count the number of bytes covered
by the checksum). These uses are shown in Fig. 2. When

Source
Address

Destination
Address

Zeros Proto
UDP Length

Source Port
Destination Port

UDP Length
UDP Checksum

UDP Payload
...
...
...

UDP Options
...

Pseudo-header Length

UDP Header Length

Checksum Coverage
Length

Fig. 2: Checksum computation for the three Length values.

options are included, each usage of the length can result in a
different checksum result. The UDP header Length contains
always, by definition, the correct value but the combinations
of the other fields can result in four schemes with differing
checksum values. The types of different checksum schemes
that we identified are summarised in Table II.

Our analysis also shows that datagrams can experience
multiple successive checks using different schemes. In some
cases, more than one check was performed in the same system,
perhaps one implemented in the network stack and one in the
interface (e.g., when performing checksum offload).

For UDP, these variations in the implementation of the
checksum scheme are benign. The scheme has no impact
on the resulting checksum value, and hence no impact on
the probability that a UDP datagram successfully traverses a
network path. The use of multiple checks is benign for UDP-O
only when all the checks validate the checksum using the same
scheme. Otherwise, use of a different scheme would result in
a different checksum value and discard of the datagram.

C. Checks in the Network

On certain paths all UDP-O datagrams were discarded,
regardless of which checksum was used. We identified three
other interferences within the network.

The end-to-end model does not require network devices to
verify transport integrity of packets that they forward. How-
ever, our preliminary tests demonstrated that some do validate
the UDP checksum. Our investigation revealed checksum com-
putation in middleboxes both in client networks (such as home
NATs or Carrier Grade NATs [22]) and in proximity of UDP
servers on the Internet (such as firewalls or IDS/IPS [23]).
Network devices could also check the consistency between
the UDP Length field and the IP payload Length field. For
example this could be checked by a security device to avoid
a flow exposing a communications side channel.

UDP, and hence UDP-O permit inhibiting the checksum
verification for a UDP datagram, by inserting a zero value
in the UDP checksum field. Interference by on-path network

devices was also found when this zero checksum was used,
although this was only evident on a small subset of paths.

We investigated paths using zero checksum and further
using the total set of 65,536 values for the checksum on a
fixed packet, concluding that some paths check consistency
between the UDP Length and IP payload length, discarding
datagrams where this fails. We also used the Tracebox [9]
methodology to detect other potential middlebox interference,
such as deletion or alteration of the surplus area, but we did
not find evidence of such pathologies.

D. Overcoming the Constraint of Multiple Checksum Schemes

Our results revealed a much lower probability of traversal
than expected, due to conflicting use of different checksum
schemes. The 2nd scheme was most widespread, where the
IP payload length is used both in the UDP pseudo-header and
the coverage length (see Sec. IV). At first sight, these results
seem to indicate that UDP-O datagrams are unable to traverse
many Internet paths.

We propose a way to neutralise the impact on path traversal
resulting from different checksum schemes by introducing
a new UDP option, the Checksum Compensation Option
(CCO) [24]. The CCO provides an integrity check for the
options area using a 2-byte checksum and a 2-byte pseudo-
header containing the length of the options. This relies on the
observation that unlike a CRC, the order of computation for a
checksum does not impact the final result. The CCO therefore
adds fields to the UDP options area that compensate for the
difference between a correct checksum and the checksum
calculated using an IP Payload length (the most common
pathology). This result in the same checksum value when
either checksum scheme is used (Fig. 3). The CCO must be
aligned with the start of the UDP Datagram. Any padding must
be taken into account to also compensate for misalignment
between the UDP header and the first byte of the options
area [24].

III. PATH TRAVERSAL MEASUREMENT

We developed Tracemore [25] to perform the measurements
in this work. This was derived from the Mobile Tracebox code
base [26]. We extended its core, written in C and compiled
through the Android NDK, to enable deployment on Linux.
This tool can customise the IP and UDP fields, including
lengths and checksums, forging UDP and UDP-O packets
compliant with the presented schemes or with a checksum not
compliant with any scheme. The UDP Payload can also be
edited using crafted application packets, e.g. a DNS request.

A. Measurement Methodology

Based on the set of discovered pathologies, we built a
test suite that utilises a sequence of ten datagrams, shown in
Table III. This comprises: (i) three UDP datagrams; (ii) seven
UDP-O datagrams, one with the CCO.

A set of three UDP datagrams are used to characterise the
traversal of a path in the absence of using UDP-O (packets
#1-3). A reply to the first datagram indicates that the path is

TABLE II: Four UDP Checksum computation schemes observed.

Scheme UDP Header UDP Pseudo-header Checksum Coverage

1 Correct UDP Checksum UDP Length UDP Length UDP Length
2 IP Payload Checksum UDP Length IP Payload Length IP Payload Length
3 3rd Checksum UDP Length UDP Length IP Payload Length
4 4th Checksum UDP Length IP Payload Length UDP Length

Source
Address

Destination
Address

Zeros Proto
UDP Length

Source
Address

Destination
Address

Zeros Proto
IP Payload Length Options Length

Source Port
Destination Port

UDP Length
UDP Checksum

Source Port
Destination Port

UDP Length
UDP Checksum

UDP Payload
...
...
...

UDP Payload
...
...
...

UDP Options
...

UDP Options
...

(a) (b) (c)

Fig. 3: UDP Checksum computation using UDP Length (a),
IP Payload length (b) and the delta between the two (c).

currently forwarding packets (if there is no reply, the test is
not continued). The next two datagrams respectively probe to
determine whether there is any interference with the use of
a zero checksum (packet #2); and whether the path performs
validation by setting a bad UDP checksum value (in which
case, packet #3 would be discarded).

A set of UDP-O datagrams characterise traversal along
the tested path (packets #4-10) with a checksum computed
according to each of the four schemes in Table II. Each probe
provides specific information about the potential interference
with UDP-O (see Table I). All UDP-O datagrams carry only
a UDP MSS Option [13], except for the last, which includes
both a CCO and the MSS Option.

A UDP-O datagram sent with a correct checksum and no
CCO option is used to evaluate traversal according to the
original specifications (packet #4). This is repeated for the
other potential pathologies (packet #5-7). A UDP-O datagram
with a zero transport checksum (packet #8) has a dual purpose:
it confirms the presence of any interference caused by other
than checksum validation, e.g., resulting from an IP and
UDP length mismatch, and evaluates UDP-O traversal with
a zero checksum, for options that should not be covered by a
checksum [13]. For completeness, we also test a UDP-O with
a bad checksum (packet #9), expecting a response similar to
that for packet #3. A final UDP-O datagram sent with a correct
checksum and including the CCO option is used to evaluate
traversal with checksum compensation (packet #10).

The set of probe datagrams are sent sequentially from
different source ports with a 3 second timeout, repeating each

TABLE III: UDP and UDP-O packets in the test suite.

Packet Notes

1 UDP Correct CS
2 UDP Zero CS
3 UDP Bad CS

4 UDP Options Correct CS
5 UDP Options IP Payload CS
6 UDP Options 3rd CS
7 UDP Options 4th CS
8 UDP Options Zero CS
9 UDP Options Bad CS
10 UDP Options With CCO

TABLE IV: List of servers targeted by UDP-O measurements.

Protocol IP Origin Addresses ASes

STUN IPv4 Full range scan 66K 8K
DNS IPv4 Alexa Top-1m 190K 15K
HTTP IPv4 Alexa Top-1m 125K 5K

DNS IPv6 Alexa Top-1m 17K 1.1K
HTTP IPv6 Alexa Top-1m 12K 0.3K

datagram up to 3 times to reproduce the test.

B. Measurement Datasets

We next describe measurements performed in November
2018 using a node in the EU SeeWeb data center [27], chosen
based on the path transparency of the upstream network,
essential for this type of analysis. Initial measurements were
replicated on an Azure server (US) [28], also tested for path
transparency. We observed only a minimal difference. To
construct the Alexa Top-1m list [29] at the client location,
we obtained DNS and HTTP lists running the Hellfire Targets
server [30], a high-performance DNS resolver designed for
generating Internet measurement target lists. For each domain
in a list, it produces JSON data containing IP addresses (one
IPv4 address and one IPv6 address, if applicable) of either the
domain or its authoritative DNS server, AS, Country code,
prefix, name and rank, which it caches from the RIPEstat
database. Hellfire was executed at the University of Aberdeen.

Our measurements probed paths to a list of STUN, DNS
and HTTP servers. The number of different targets and ASes
is reported in Table IV. For STUN and DNS servers, each
UDP and UDP-O test packet carries a STUN BIND request
or a DNS query. This is expected to trigger a response from the
destination server. If a response is received the probe packet is
considered as succeeding to traverse the path to the destination.

The subset of probe packets that reach the destination
provides information about the set of pathologies that affect a

Path to servers

Pe
rc

en
ta

ge

STUN DNS HTTP DNS
IPv6

HTTP
IPv6

0

20

40

60

80

100

UDP Correct CS UDP Zero CS UDP Bad CS UDP-O Correct CS UDP-O IP Pay CS

UDP-O 3rd CS UDP-O 4th CS UDP-O Zero CS UDP-O Bad CS UDP-O CCO

Fig. 4: Overall traversal rate of probe packets.

path. The STUN servers list was obtained from a preliminary
full-scan of the IPv4 address range. The DNS list contains
the IPv4 and IPv6 addresses of authoritative DNS servers
extracted from the Alexa Top-1m list.

To increase the number of paths that we tested, we in-
cluded paths to HTTP servers. Although these servers are
not expected to reply to a UDP datagram on port 80, a
portion do reply with an ICMP (or ICMPv6) Port Unreachable
message [31] [32]. Others silently drop the UDP datagram.
Any received ICMP messages indicate that the test datagrams
had reached the target destination. Conversely a lack of ICMP
feedback could be due to various reasons, e.g. ICMP filtering
at the remote endpoint or on the return path (which may not
have been coincident with the forward path). The list of HTTP
targets was obtained by resolving Alexa Top-1m websites and
removing duplicates. The target list was further reduced by
testing if the methodology could be applied (about one quarter
of HTTP servers were eligible).

We also measure network paths, even in cases where the
packet does not reach the target HTTP server, but is intercepted
by a middlebox close to the server, e.g., a firewall that responds
with an ICMP error message. Any consistent reply received
to a subset of UDP and UDP-O packets shows the presence
of one of more UDP-O pathologies in the path to the target.

The results reported in the next section show how measure-
ments from these paths to HTTP servers are qualitatively and
quantitatively similar to those that would be obtained from a
UDP server, especially for IPv4.

IV. RESULTS

The results obtained from the tests are shown in Fig. 4:
The column marked “UDP-O Correct CS” shows a limited
successful traversal ratio for a UDP-O datagram using the
original specification (packet #4), compared to datagrams with
an IP Payload checksum, or zero checksum (packets #5, #8).
The CCO Option (packet #10) increases traversal to 80%
for STUN and HTTP targets. Each probe provides specific

TABLE V: Path characterization for each test.

Path characterization Tests
1 2 3 4 5 6 7 8 9 10

Any Checksum X * X X X X X * X X
Correct UDP CS only X * x X x x x * x X
IP Payload CS only X * x x X x x * x X
3rd CS only X * x x x X x * x x
4th CS only X * x x x x X * x x
Correct CS or IP Pay CS X * x X X x x * x X
Compensated CS only X * x x x x x * x X
Zero CS only X X x x x x x X x x
No UDP-O traversal X * * x x x x x x x

information about the path, but their combination can highlight
the pathology or pathologies that affect the path.

We next characterise paths using a combination of probe
results (as detailed in Table V):

a) Any checksum: all tested packets traverse this path, in-
cluding those with a bad UDP checksum. This unexpected
phenomenon has been observed on paths to both UDP
servers and to HTTP servers. Packets with an incorrect
checksum should have been discarded, suggesting the
destination does not validate the checksum.

b) Correct UDP checksum only: a response is received only
to UDP-O datagrams that carry a correct checksum.

c) IP Payload checksum only: only datagrams compliant
with this scheme can traverse the path.

d) 3rd checksum only.
e) 4th checksum only. In (c)-(e) UDP-O datagrams with a

correct checksum are discarded.
f) Correct UDP checksum or IP Payload checksum: data-

grams compliant with one of the two schemes are ac-
cepted, while all other non-zero checksums are discarded.

g) Checksum compensated by CCO only: only datagrams
compliant with both schemes (using the CCO) reach the
destination. This can be explained by a series of check-
sum validations implementing the two different schemes.

h) Zero checksum only: datagrams with a zero checksum
are ignored when detecting checksum pathologies. How-
ever, we identified paths where all non-zero checksum
datagrams were dropped, which could be explained by
multiple checksum validations.

i) No UDP-O traversal: paths where no UDP-O datagrams
reach the destination. Discard suggests this is likely due
to a consistency check between the IP and UDP length.

Table V takes into account the interdependence between
tests. For instance if a path is traversed by a datagram #4
(correct checksum), it is expected to be traversed also by
a datagram #10 (but not vice versa). A negligible fraction
of measurements (about 1%) indicate inconsistent outcomes,
most likely due to further interference by middleboxes (e.g.,
firewalls triggered by many consecutive STUN BIND requests
or DNS queries received from the same host), temporary
congestion, or potentially the presence of a load balancer that
routes different test datagrams through different paths.

Fig. 5 shows the proportion of the different listed categories,

Path to servers

Pe
rc

en
ta

ge

STUN DNS HTTP DNS
IPv6

HTTP
IPv6

0

20

40

60

80

100

Any CS Correct CS only Correct CS or IP Pay CS IP Pay CS only

Compensated CS only Other No UDP-O traversal

Fig. 5: Path chacterisation by application (results in green and
yellow show traversal using the standardised method; green,
yellow, red and pink show the cumulative traversal when the
CCO is used; blue and grey represent other pathologies).

grouped by the type of server. To improve the readability, the
categories with the smallest percentages, i.e., 3rd checksum
only, 4th checksum only and zero checksum only, were
included into the “Other” category. We presented these for
the sake of completeness and to highlight the diversity of
middlebox interference discovered.

The IP Payload checksum pathology (alone or in conjunc-
tion with the benign pathology) is the most widespread. To
determine its prevalence, we grouped all the affected paths
(reported in Fig. 6) and compared these to the set of paths
traversed by at least one UDP-O datagram. This showed that
at least one validation using the wrong scheme was observed
for more than 80% of the paths traversed by UDP-O. On
paths that completely block UDP-O, it is not possible to
distinguish which checksum computation is performed. Not all
paths affected by the pathology are problematic. For instance,
UDP-O can be still deployed on paths where both checksums
are accepted according to the original specifications. The
problematic paths can be traversed using the CCO.

A. Path Traversal using the CCO

Fig. 7 shows the paths traversed by UDP-O datagrams with
a correct checksum (categories a, b and f of the previous clas-
sification) and the paths traversed only by UDP-O datagrams
carrying a CCO (categories c and g). The CCO significantly
increases the number of paths that can be traversed and for
IPv4 paths to STUN and DNS servers, the increment from
using the CCO is even greater than the number of paths
originally traversed by UDP-O.

Despite this improvement, about 16% of paths can not
be traversed using the CCO, including paths where another
scheme (the 3rd or 4th checksum) or multiple incompatible
schemes are used or paths that block UDP-O datagrams (e..g.
due to a length consistency check). The ossification on these

Path to servers

Pe
rc

en
ta

ge

STUN DNS HTTP DNS
IPv6

HTTP
IPv6

0

20

40

60

80

100

Paths traversed by UDP-O IP Payload CS pathology

Fig. 6: Paths traversed by at least one UDP-O datagram and
paths affected by IP Payload checksum pathology.

paths cannot be mitigated and they would need to be updated
to enable traversal of UDP-O datagrams.

We further analysed the contribution of using the CCO
on a per AS basis to identify whether operational practice
influenced the outcome. We found paths to destinations be-
longing to the same AS were widely different and a significant
portion of ASes included paths with different pathologies and
characteristics. Fig. 8 shows the percentage of paths where
UDP-O datagrams traverse by default and the percentage that
work using a CCO. To improve plot readability, ASes are
ordered decreasing by the traversal rate using the CCO and
then by the traversal rate without the CCO. Three main regions
are visible in the figure:

1) ASes in which all paths can be traversed by UDP-O
(63.29%): the majority benefit from using the CCO and a
large number support UDP-O only when using the CCO;

2) ASes in which a subset of paths can be traversed by UDP-
O (17.58%): the CCO increases the number of traversed
paths for most ASes in this region.

3) ASes in which no measured path could be traversed by
UDP-O, without or with the CCO (19.13%).

B. Path Traversal using a Zero Checksum

One possibility is to allow a UDP zero checksum with UDP-
O to improve traversal in cases where the UDP checksum
would otherwise be validated using an incorrect scheme.
Table VI compares the results for UDP-O traversal using a
combination of a CCO and a zero checksum. It highlights the
number of paths that can be supported by both solutions, or
only one of the two. These results are for IPv4.

A datagram with zero checksum is expected to traverse not
only paths enabled by the CCO, but also paths that use one of
the other checksum schemes or where multiple and conflicting
schemes are used. The results of our measurements show that
paths traversed with a zero checksum are not always better
than paths traversed with just a CCO: there is a small portion
of paths where the CCO works and zero checksum datagrams

Path to servers

Pe
rc

en
ta

ge

STUN DNS HTTP DNS
IPv6

HTTP
IPv6

0

20

40

60

80

100

Without CCO CCO increment

Fig. 7: Path traversal without and with CCO.

are discarded. Table VI also reports UDP traversal with zero
checksum to highlight that a modest interference with zero
checksum was also observed with regular UDP datagrams.

The IPv6 node receiver behavior is required to silently
discard all IPv6 packets that carry a datagram with a zero
UDP checksum. IPv6 was updated in 2013 [7], to allow
specific use cases to utilise a zero transport checksum. It would
therefore be useful to understand whether paths also forward
IPv6 UDP-O datagrams with a zero checksum. However, our
present methodology relies on a response from a destination.
We observed a response for only 3% of test cases, preventing
further analysis using our tool. Future work will investigate
UDP-O traversal for IPv6 with a zero checksum.

V. DISCUSSION

Our results unveil an underlying level of ossification that
was silently affecting UDP. In exploring the deployabil-
ity of UDP-O, our work has revealed different patterns
of interference from that were also exposed by previous
work [9] [10] [11]. Interference with TCP Options, such as
MPTCP [12], concern only one layer, the changes described
here involve operation at both the network and transport layers.

A. Ambiguity in the Calculation of the Transport Checksum

Many UDP stacks compute a checksum using the IP Pay-
load length and this scheme is more prevalent than the correct
scheme using the UDP length. This design choice could follow
the method used for TCP: because the TCP header has no
length field, the length of a segment is deduced from the IP
header and the checksum computed over all transport-layer
bytes, as observed for UDP datagrams in anomalous devices.

Our results show a common case where a path accepts
either the correct checksum or one based on the IP length (but
all other non-zero checksum values are invalid). A possible
explanation is that these two validations occur at different
layers within a single device.

To verify this hypothesis we analysed several Linux de-
vices that exhibited this phenomenon, including workstations,

AS

Pe
rc

en
ta

ge

0 5000 10000 15000 19520
0

20

40

60

80

100

Without CCO CCO increment

Fig. 8: Percentage of paths traversed by UDP Options packets
without and with CCO within each AS.

TABLE VI: Comparison of UDP-O traversal using CCO and
Zero CS on IPv4 paths.

STUN DNS HTTP

UDP Zero CS 98.61% 99.73% 99.75%

UDP-O

CCO 84.98% 80.97% 93.95%
Zero CS 84.78% 81.60% 94.19%
Both 83.72% 80.66% 93.77%
Only CCO 1.26% 0.31% 0.18%
Only Zero CS 1.06% 0.94% 0.42%

servers and Android smartphones, realising that the IP Pay-
load checksum validation was only observed when checksum
offloading enabled. A Linux [33] host accepts a datagram
when the checksum has been verified by the network interface
checksum offload engine, otherwise the checksum is verified
in the kernel. Packets with a valid IP payload checksum are
accepted by the offload device, while packets with a correct
UDP checksum are validated by the kernel. UDP-O packets
with a correct checksum need to be validated by the kernel.
Offload must also be disabled for transmission (to avoid
generating a wrong checksum), requiring kernel checksum
computation. When using the CCO, the transport checksum
in packets is validated directly by the offload device, only
requiring the host stack to verify the CCO covering the options
payload.

Rather than require all network devices to be updated to
enable traversal of UDP-O, we introduce the CCO which
would enable continued coexistence of the two schemes.

In future measurement work, we plan to perform scans
over other UDP protocols (on IPv4 full range and IPv6 target
lists [34]) to validate our findings on a larger dataset.

B. Deployability of UDP Options with a Zero Checksum

As a potential remedy to path pathologies, we also analysed
traversal when the transport checksum is disabled. The limited
increment in paths traversed, combined with the loss of a
similar percentage of paths due to network devices that drop

datagrams with a zero checksum, suggests that using a zero
checksum is not a suitable alternative to using a CCO.

However, there could be other reasons why a UDP-O
packet wishes to not set the checksum. For instance, when
an encapsulation device does not have full access to the UDP
datagram payload. This could be the case for a method seeking
to reproduce UDP-Lite semantics by transmitting a payload
only partially covered by checksum defined in the UDP-O
area. Such a method would not be able to utilise the CCO.
However, we anticipate that there is limited usefulness for
UDP-Lite semantics, and note that this increases variability
in path traversal and anyway complicates the implementation
of UDP-O. The authors suggest this may not justify its final
inclusion in the specification.

C. Deployability of UDP Options using a CCO

We proposed introduction of the CCO to UDP-O, and
showed that this can overcome the major obstacles to traversal
with the current network equipment and therefore significantly
enhance the chances of adoption of the new extension.

The results show that the CCO can improve the traversal
of UDP-O both in terms of single paths and traversal across
an AS. The CCO mechanism has since been adopted as a
part of the UDP Option specification [13], by incorporating
a recommendation to use a (redesigned) Option Checksum
(OCS). Importantly, the design of the OCS needs to include
the length field in the computation to achieve the benefits of
the CCO. Our findings suggest that this field is needed for
acceptable traversal, when the UDP-O checksum is non-zero.

D. Genesis of UDP Options Pathologies

We observed middleboxes ossifying around a check for
the consistency of the UDP length (e.g., to detect malformed
packets or check no covert channel is present). This has a
direct impact on the transport function. In other cases, a range
of UDP checksum schemes has had an undesired impact that
combines to ossify the transport function.

We contacted the manufacturer of one device that blocked
UDP-O. They confirmed that their middleboxes performed a
consistency check between the IP and UDP length, along with
other integrity checks on datagrams and discarded them in
the case of a length mismatch. Another network equipment
manufacturer explained that their default behavior for a stateful
firewall was to discard all packets with incorrect checksums.
This is reasonable since, before applying rules that involve
the transport layer to the packet, transport integrity should
be verified. These rules would need to be revised to enable
deployment of UDP-O along paths that include these devices.

VI. CONCLUSIONS AND FUTURE WORK

This paper has analysed the use and computation of the
UDP checksum. It reports a range of implemented checksum
schemes that have been deployed. This analysis has been used
to assess the deployability of UDP Options (UDP-O) which
seeks to enable interoperable common transport options with
the potential to add flexibility to the core design of UDP.

We report for the first time the current limitations that UDP-
O will face due to existing network equipment, revealing an
unforeseen level of ossification for UDP. We explain a set of
discovered path pathologies and then detail each pathology to
discuss its extent, as well as suggesting the origin. Related
to UDP-O, we evaluate the implications of the different
pathologies and propose an option to mitigate these effects (the
CCO). We then show how this can significantly increase UDP-
O traversal. We explore the use of UDP zero checksum as a
potential alternative proposal and compare that with the use
of the CCO, finally concluding the CCO offers most benefit.

REFERENCES

[1] J. Postel, “User datagram protocol,” Tech. Rep., RFC 768.
[2] G. Fairhurst and T. Jones, “Transport Features of the User Datagram

Protocol (UDP) and Lightweight UDP (UDP-Lite),” 2018, RFC 8304.
[3] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and se-

cure transport,” 2020, draft-ietf-quic-transport, IETF, Work in progress.
[4] K. Edeline, M. Kühlewind, B. Trammell, and B. Donnet, “copycat:

Testing differential treatment of new transport protocols in the wild,”
in Applied Networking Research Workshop, 2017, pp. 13–19.

[5] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson, and G. Fairhurst,
“The Lightweight User Datagram Protocol (UDP-Lite),” 2004, RFC
3828.

[6] M. Eubanks, P. Chimento, and M. Westerlund, “IPv6 and UDP Check-
sums for Tunneled Packets,” 2013, RFC 6935.

[7] G. Fairhurst and M. Westerlund, “Applicability Statement for the Use of
IPv6 UDP Datagrams with Zero Checksums,” April 2013, RFC 6936.

[8] I. R. Learmonth, B. Trammell, M. Kuhlewind, and G. Fairhurst, “Path-
spider: A tool for active measurement of path transparency,” in Applied
Networking Research Workshop, 2016, pp. 62–64.

[9] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in ACM Internet
Measurement Conf. (IMC), October 2013.

[10] R. Zullo, A. Pescapé, K. Edeline, and B. Donnet, “Hic sunt proxies:
Unveiling proxy phenomena in mobile networks,” in Network Traffic
Measurement and Analysis Conf. (TMA). IEEE, 2019, pp. 227–232.

[11] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP,” in ACM Internet
Measurement Conf. (IMC), November 2011.

[12] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaventure,
“Are tcp extensions middlebox-proof?” in Hot topics in Middleboxes
and Network Function Virtualization, 2013, pp. 37–42.

[13] J. Touch, “Transport options for UDP,” 2019, draft-touch-tsvwg-udp-
options, Work in progress.

[14] T. Herbert, “Firewall and service tickets,” 2019, draft-herbert-fast-04,
Work in progress.

[15] G. Fairhurst and T. Jones, “Datagram PLPMTUD for UDP Options,”
2020, draft-fairhurst-tsvwg-udp-options-dplpmtud, Work in progress.

[16] G. Fairhurst, T. Jones, I. Tuexen, M Ruengeler, and T. Voelker,
“PLPMTUD for Datagram Transports,” 2020, draft-ietf-tsvwg-datagram-
plpmtud, Work in progress.

[17] R. Bonica, G. Huston, R. Hinden, O. Troan, and F. Gont, “IP Fragmen-
tation Considered Fragile,” 2019, draft-ietf-intarea-frag-fragile, Work-in-
Progress.

[18] O. Kolkman and R. Gieben, “DNSSEC operational practices,” 2006,
RFC 4641.

[19] “FreeBSD UDP-O implementation,” https://github.com/uoaerg/freebsd.
[20] B. Braden, D. Borman, and C. Partridge, “Computing the internet

checksum,” 1988, RFC 1071.
[21] “FreeBSD commit r334705,” see https://svnweb.freebsd.org/base?view=

revision&revision=334705.
[22] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush,

A. Feldmann, C. Kreibich, N. Weaver, and V. Paxson, “A multi-
perspective analysis of carrier-grade nat deployment,” in Internet Mea-
surement Conf., 2016, pp. 215–229.

[23] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in ACM SIGCOMM, August 2012.

[24] G. Fairhurst, T. Jones, and R. Zullo, “Checksum Compensation Op-
tions for UDP Options,” 2018, draft-fairhurst-udp-options-cco, Work-
in-Progress.

[25] R. Zullo, “Tracemore,” 2018, http://www.middleboxes.org/tracemore.
[26] R. Zullo, A. Pescapé, K. Edeline, and B. Donnet, “Hic sunt NATs:

Uncovering address translation with a smart traceroute,” in Network
Traffic Measurement and Analysis Conference (TMA), 2017.

[27] “SeeWeb datacenter,” https://www.seeweb.it/en/data-center.
[28] “Microsoft Azure,” https://azure.microsoft.com.
[29] “Alexa Top sites,” https://www.alexa.com/topsites.
[30] “Hellfire,” 2018, see https://github.com/irl/hellfire.
[31] J. Postel, “Internet control message protocol,” IETF, RFC 792, 1981.
[32] A. Conta, S. Deering, and M. Gupta, “ICMPv6,” 2006, RFC 4443.
[33] “Linux kernel source tree,” 2019, https://github.com/torvalds/linux/blob/

master/net/ipv4/udp.c.
[34] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning

the ipv6 internet: towards a comprehensive hitlist,” arXiv preprint
arXiv:1607.05179, 2016.

