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Abstract—Over the last decade, in an attempt to improve end-user
performance, the community has proposed a multitude of changes
to the networking stack’s configuration parameters. These changes
range from new default values (e.g., initial congestion window size)
to the development of new configuration options (e.g., congestion
control protocols). While the networking community has performed
extensive studies on the performance implications of configuration
optimizations, these studies have been performed in isolation and,
moreover, there are no holistic and general tools to infer, analyze,
and understand the actual configuration choices employed by online
content providers and content distribution networks.

To this end, we present Inspector Gadget, a flexible and accurate
framework for characterizing and fingerprinting a web server’s
networking’s stack configuration parameters. Inspector Gadget
leverages domain-specific heuristics to reverse engineer configuration
parameters and options. To demonstrate the efficacy of Inspector
Gadget, we implemented a prototype of Inspector Gadget and used
it to survey the configuration parameters for the Alexa top 5K sites.
To motivate this work, we surveyed network operators to get a
qualitative understanding of their approach towards tuning their
networking stacks and the root cause of configuration heterogeneity.
To further illustrate our tool’s strength, we fed the results into an
emulator and analyzed the optimality and fairness of the current
configurations for various websites.

I. INTRODUCTION

Society’s evolving expectations for better Quality of Experience
(QoE) and richer web services are transforming today’s web server’s
networking stack. In particular, the community is continuously
churning out “better” congestion control algorithms (CCAs), TLS,
and HTTP protocols and configurations to deliver higher perfor-
mance (QoE) [1]–[3]. This aggressive evolution of the networking
stack is further spurred by the increasing diversity of networking
conditions [2], [4], [5], end-user device capabilities [6], [7], and web
page complexity [8], [9], all of which necessitate improvements to
existing protocols. These protocols are often exposed as configura-
tion parameters that must be explicitly tuned by content providers’
operators and administrators. In Table I, we present a representative
subset of TCP’s configuration parameters and observe that some of
the default or suggested settings, e.g., Initial Congestion Window
(ICW), have changed multiple times over the last three decades.

Consequently, server administrators for online content providers
and content distribution networks referred to as content providers,
are faced with a jungle of configuration parameters, many of which
promise improved performance. Unfortunately, recent studies on
networking protocol configurations [2]–[5], [10] demonstrate that
tuning networking configuration parameters is a non-trivial task
that requires intimate knowledge about the complexity of the

Configuration Parameter Suggested Value(s)
Init. Congestion Window 1 (’97) [11], 2 (’98) [12], 4 (’02) [13], 10 (’11) [14]

Initial RTO 3 secs (’00) [15], 1 secs (’11) [16].
Congestion Control Reno [17], Bic (’04) [18], Cubic (’06) [19]
Connection startup FastOpen (’14) [20]

TABLE I: Suggested TCP configuration values over time.

deployed websites (i.e., # of objects and size of objects) and the
expected networking conditions (i.e., bandwidth, loss, and RTT)
of the targeted clients. To further complicate configuration-tuning,
the supported configuration parameters and their default values vary
across OSes and even across different versions of the same OS.

A direct result of this complexity is that it is not clear which
configuration parameters are employed by modern websites or
how these parameters vary across different websites and content
providers. Yet, knowledge of these configurations remains crucial for
reasoning about the current dynamics of the Internet in terms of per-
formance, fairness, and protocol equilibrium. Without information
about the current configurations, it is difficult to reason about how
new protocols, or even existing protocols, will behave in the wild.

Our goal is to develop a framework that allows operators and
researchers to conduct a census of the configuration parameters used
by content providers and analyze the impact of parameter-tuning
or lack thereof on global questions. Our work is motivated by the
following questions:

(i) Do content providers tune their stacks, i.e., choose values
other than the default values? (Section VI), (ii) Given the configured
parameters, how do their flows interact with each other, in terms
of fairness (i.e., bandwidth sharing)? (Section VIII-A), (iii) How
optimal are the configurations currently employed by content
providers? (Section VIII-B)

Although these questions are fundamental to understanding the
health of the Internet and the implications of new protocols, they
are difficult to answer because we lack the (1) algorithms and
frameworks to infer the configuration of content providers, (2) a
standardized setup consisting of a data set specifying the number
of flows for each web service, and an emulator for replaying and
analyzing these interactions. While emulators and datasets exist, the
existing tools can not holistically infer a web server’s configurations
across the transport and application layers. This deficiency is
problematic because performance and fairness are a function of
interactions between the different configurations and the magnitude
of traffic using the different configurations,

The first step to answering these questions lies in designing a
framework that can passively analyze a web server and infer the
server’s networking stack’s configurations and parameters. Given
such a tool, many of these questions can be answered through978-3-903176-27-0 ©2020 IFIP



controlled experiments in simulations or emulations. In this paper,
we present Inspector Gadget, a system that allows operators and
researchers to answer these questions by inferring the protocol
configurations and parameters of the network stack of modern
content providers. It consists of the following components:

• A set of active measurement techniques for identifying a web
server’s current protocol configurations.

• A framework for using our inferences techniques to scan
websites on the Internet scalably.

• A toolbox of analysis methodologies and an emulator to analyze
the interactions between different configurations and protocols
within realistic network conditions.

Although Inspector Gadget includes an emulator and data,
our key contribution lies in the framework and accompanying
algorithms for accurately inferring the configuration parameters and
values for modern web services. The design of these frameworks
and algorithms is complicated by the following factors: (i) while
some settings are part of the packet headers (e.g., TCP or HTTP
options), the most interesting ones (e.g., congestion control) can
only be inferred using domain-specific heuristics; (ii) any inference
algorithms must be agnostic to network conditions, server OS and
other factors that are outside control of end user frameworks such
as ours; (iii) the framework must be flexible enough to support
future configuration parameters and general enough to capture the
broad range of existing configuration parameters.

We implemented Inspector Gadget and evaluated it on the Alexa
top 5K websites. To understand the root cause of configuration
heterogeneity, we surveyed top network operators and captured
information about their approach to configuration tuning.

The key findings and insights of our measurements are:

• Protocol Dominance: Contrary to popular opinion, there is no
overwhelmingly dominant protocol. In fact, the existence of
multiple dominant protocols indicates a need to revisit modeling
frameworks: from modeling and analyzing interactions between
two protocols to interactions between various protocols.

• Regional Differences: Configurations in N. America differ
significantly from configurations used in other regions, indicating
a need for regional modeling of performance and fairness. Based
on our measurements and surveys, there is evidence that many
web servers are not using default values but rather specifically
tweaked values based on internal objectives.

• Optimality of Selected Configurations: While many web
services are tuned to provide good performance, these
configurations do not provide optimal performance across all
network conditions. Thus, there is a need to perform region
specific tuning, as users in developing regions may face radically
different network conditions than in developed regions [21].

• Fairness: Unsurprisingly, the current Internet is unfair.
However, the degree of unfairness changes depending on which
configurations are used, and thus there is a need to analyze the
Internet to determine current protocol configurations periodically.

Inspector Gadget is implemented in Python and is open-source.
The code can be found at https://github.com/Brown-NSG/inspector-
gadget.

Layer Parameters TBIT
[22]

CAAI
[23]

Gordon
[24]

Deep
CCI [25]

Inspector
Gadget

Explicit
defined

TCP

initcwnd X X X X X X
Congestion Control X X X X X X
slow start after idle X X X X X X
Timeout (RTO) X X X X X X
FastOpen (TFO) X X X X X X
rcv. buffer X X X X X X

TLS

TLS Version X X X X X X
Session ticket X X X X X X
OCSP stapling X X X X X X
ALPN X X X X X X
TLS Renegotiation X X X X X X
Forward secrecy X X X X X X

HTTP

HTTP version X X X X X X
keep alive timeout X X X X X X
max conc. streams X X X X X X
initial window size X X X X X X
max header list size X X X X X X
max frame size X X X X X X
header table size X X X X X X
stream priority X X X X X X

TABLE II: Inferred configuration parameters: while the tool can infer
TLS/HTTP parameters, this paper focuses on TCP. Please refer to [26]
for application layer measurements.

II. RELATED WORKS

The most closely related works [22], [25], [27]–[30] analyze
the configuration and behavior of TCP. Unlike Inspector Gadget,
CAAI [30] and TBIT [27] do not interoperate with TLS/SSL.
Although TBIT [27] can support TLS with the help of Scamper [31],
it is limited to just a few TCP settings and does not infer modern
CCAs (Table II). Compared with Gordon [24], our tool employs
optimizations to tackle various domain-specific problems (e.g.,
pacing). Unlike DeepCCI, which supports three CCAs (i.e.,
Cubic, BBR, Reno), Inspector Gadget supports a broader set of
CCAs. While other approaches have studied the implications
of configuration and protocol choice at the HTTP and the TLS
layers [2], [10], [32], our current work introduces innovation
along a complementary direction – namely the transport layer (i.e.,
TCP). Inspector Gadget characterizes a broader range of CCA
protocols and networking stack parameters than prior works (e.g.,
TCP slow start after idle, RTO, FastOpen, and RMem, crucial
web-tuning configurations [33]) and also outperforms them in terms
of inference accuracy (as we show in Section V).

The crucial difference with our previous work [26] is that, while
our previous work [26] presented an option parser module for the
TLS and HTTP layers, here we introduce the behavior parser which
allows our tool to explore the transport layer. In addition to the
tool, we also present a novel measurement study on the TCP related
anomalies that we encountered while fingerprinting different Linux
implementations in-the-wild (Section VI-F).

While our work analyzes the configurations and protocols
of deployed web-services, others [2], [4] have performed a
quantitative analysis of the implications of different parameters
and protocol versions. These measurement studies motivate our
desire to understand practical deployments. Our work goes a level
deeper by conducting testbed-based and in-the-wild experiments
to empirically evaluate fairness, performance, and the operational
implications of the choices made at the transport level.



Fig. 1: Overview of content provider infrastructure. Fig. 2: CWND evolution for Cubic.
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Fig. 3: Workflow for Behavior Parser.

III. BACKGROUND

In this section, we provide a brief overview of the networking
stack of modern content providers (Section III-A) and present
detailed background on the transport layer (the central focus of our
tool) (Section III-B).

A. Networking Stack

The web serving stack, Figure 1, consists of the TCP/TLS/HTTP
protocol implementations, and the content provider’s web
application (e.g., PHP or Java code). Traditionally, these servers
employ broadly two different network stacks – one for user-facing
connections and another for the data-center facing connections.
The goal of this work is to fingerprint and analyze the user-facing
networking stacks. Content providers tune them to improve perfor-
mance across all the users [1]. Table II presents a representative list
of such tunable parameters across the different layers of the stack.

B. Transport Background

The transport protocol controls the sending rate and aims
to ensure full utilization of the network and fairness among
connections sharing the bottleneck link. To this end, the protocol
monitors the network and uses signals from the network to infer
its fair-share while maximizing utilization. There are roughly
three types of CCAs: delay-based (e.g., Vegas), loss-based (e.g.,
Cubic), and hybrid (e.g., BBR-v2). Regardless of the type of CCA,
data is exchanged between a sender and a receiver. The latter
acknowledges the receipt of the data packets by sending special
acknowledgment packets, frequently called ACKs. The congestion
control algorithm (CCA) limits the number of packets that the
sender can send at once – called the congestion window or CWND.
The size of the CWND evolves over the lifetime of the connection.

Figure 2 plots the evolution of CWND for Cubic’s CCA. The
distinct sending rate behaviors and their transition for modern CCs
can be categorized into three phases: (1) An initial ramp-up phase
(AKA slow-start) where the protocol tries to understand available
network bandwidth. (2) A steady-state (AKA congestion avoidance)
during which the protocol probes the network to react to network
dynamics; and (3) A loss recovery phase where-in the protocol
reacts to packet loss.

During the ramp-up phase, the initial window size is a predefined
protocol configuration called the initial congestion window
(ICW). The transition between ramp-up and steady-state is
often due to a protocol-defined configuration value called initial
SlowStartThreshold (initSSThresh): the transition occurs when the
CWDN becomes larger than initSSThresh. To detect losses, the
protocol includes a predefined Timeout, called a retransmission

timeout (RTO), which the protocol uses to decide how long to wait
before a packet is considered lost.

Additionally, for delay-based congestion control protocols, the
protocol reacts to changes in delay (or RTT) during steady-state,
and often, there is no explicit loss recovery phase.

IV. INSPECTOR GADGET

The goal of Inspector Gadget is to infer a web server’s networking
stack’s configuration parameters and values. In this work, we focus
mainly on the transport protocol because we recently analyzed other
aspects, i.e., TLS and HTTP, in our workshop paper [26]. Moreover,
today we lack a highly accurate tool to fingerprint the transport
layer — congestion control algorithms and their parameters.

Given our objectives, the main design requirements for Inspector
Gadget are:
• Generality: It must be OS and network agnostic, and its

accuracy must not be affected by heterogeneity in the network’s
conditions between the framework and the target web server.

• Compatibility: It must interoperate with TLS/HTTPS to be
compatible with modern web-services. While trivial, this is
an important requirement because most existing tools are
incompatible with modern websites (Table II).

• Evolvable: The protocols are constantly changing and evolving,
Inspector Gadget must be easily extensible to account for new
protocols and protocol evolution.

• Accuracy: Lastly, and perhaps most obvious, Inspector Gadget
must provide highly accurate results under varying network
conditions and server configurations.
Inspector Gadget overcomes these challenges by leveraging the

following observation: most configuration parameters impact the
spatial, structural, or temporal aspects of a flow’s packets. While
some parameters impact the size of packets (e.g., MSS option),
others impact the spacing between packets (e.g., congestion control),
and, yet, some impact the header values of the packets (e.g., TCP
options). Thus, by examining flows within a controlled setting along
these three dimensions, we can infer the protocol’s configuration
parameters.

Although the target server and the physical Internet infrastructure
are beyond an end user’s control, and hence beyond our control,
the reliance of the TCP CCAs on client-generated ACKs allows
Inspector Gadget to virtualize the network infrastructure and emulate
a virtual network with appropriate network events (e.g., packet loss).
This controlled virtual network allows Inspector Gadget to infer
a server’s CCA based on the CCA’s reaction to the induced events
while enabling us to limit network variance and heterogeneity.

Inspector Gadget is composed of the following two modules,
which allows it to address the different configuration parameters:



A. Options Parser Module
This module parses TCP headers for options and header fields to

help infer the configuration values that are exposed and exchanged
within the header, e.g., TCP Fast Open. Our current options parser
accepts a list of rules which maps the bits in a packet’s header to
the corresponding configuration values and enables us to extract
them easily. By designing the options parser around a set of
predefined rules, we can easily extend Inspector Gadget by adding
new rules. This module is used to fingerprint the “explicitly-defined”
configurations in Table II.

B. Behavior Parser Module
The congestion control protocol used in a connection is not

explicitly exchanged as an option in TCP headers or agreed
explicitly upon during the TCP handshake. Thus, to determine these
configurations values, we designed Behavior Parser module, which
infers the configurations based on the set of packets exchanged
between the server and our tool.

Recall, a traditional CCA has three phases, and it transitions
through these phases in response to different triggers (i.e., internal
and external events). The initial transition between ramp-up and
steady-state (also between loss-recovery and steady-state) is an inter-
nal state transition triggered by protocol dynamics (e.g., Cubic uses
initSSThresh). In contrast, the transition to loss recovery requires an
external event (e.g., loss-event). For delay-based congestion control
algorithms, e.g., Vegas and BBR, the transitions during steady-state
are in response to delay variations. Thus, to fingerprint these CCAs,
our tool must emulate events that force these transitions.

Workflow: In Figure 3, we present the Behavior Parser’s
workflow. Step-1 is to interact with the target server, inject network
events, and extract a clean trace of packet timings and cwnds
(§IV-B1). Step-2 comprises of processing the cwnd trace to extract
a cwnd vector (§IV-B2). Finally, in step-3, a classifier is used to
infer the CCA protocol based on the CWND trace (§IV-B3).

1) Step 1: cwnd Trace Creation: As CCAs control the rate
of flow (i.e., cwnd size), the trace comprises of the observed
cwnd over time. Further, network events (loss or delay variations)
are introduced, and the trace captures their impact on cwnd.
There are several practical challenges in consistently generating
a “clean” trace over the Internet: (1) standardizing the impact of
network dynamics, (2) efficiently injecting network events, (3)
accurately capturing the cwnd, and (4) dealing with practical
network challenges. Below, we explain how we deal with practical
challenges in generating a “clean” cwnd trace over the Internet.
• Standardizing network environment: The captured packet

trace may be noisy due to the Internet’s inherent variability (e.g.,
organic loss or delay). To keep the network equivalent across
different protocols and servers, we artificially inflate the RTTs by
controlling (or pacing) the rate at which ACKs are sent. This enables
us to maintain the latency and, in turn, emulate a network that
obscures network variability. Recall, from the protocol’s perspective,
that latency and bandwidth are a function of the Acknowledgement
packets (ACKs) received in response to the sent data packets.

In designing our virtual network abstraction, we observed that em-
ulating short RTTs is ineffective as they are unable to mask network
conditions, and emulating huge RTTs are ineffective because they

trigger RTOs. Thus, an appropriate RTT value must strike a balance
between being large enough to mask organic noise while being small
enough to avoid triggering RTOs. Through empirical measurements,
we settled on emulating an RTT value of 0.8s, and we note that we
can dynamically tune this value as network conditions change.
• Injecting network events: There are two options for injecting

loss: (i) dropping packets and emulating timeout [34], (ii) sending
duplicate ACKs [11]. While the latter keeps the protocol in
steady-state and does not force a transition into loss recovery, we
opt for the former because it allows us to circumvent OS and
network idiosyncracies, e.g., Linux’s burstiness control [30].

Additionally, for delay-based congestion control algorithms, e.g.,
BBR and Vegas, where losses are unimpactful, we modulate the
delay within our virtual network to enable Inspector Gadget to finger-
print them. Specifically, during the last phase (Phase 3 in §IV-B2),
we inflate the RTT by a constant factor (i.e., 50ms) every RTT.
• Congestion window estimation: Traditionally, systems

estimate cwnd by counting the number of packets received within
an RTT. However, these approaches assume TCP is synchronous
and ordered: at the start of an RTT, packets are sent in a batch and
ACKs for the batch are received towards the end of the RTT. In
practice, we observe that packets from a single cwnd are spread out
over multiple RTTs (e.g., due to pacing). Further, packet duplication
and loss renders this simple approach inaccurate. To accurately
capture the cwnd, we designed the following optimizations:

– Sequence Check (SC): Due to packet reordering and
duplication, the number of packet inflight may differ from the actual
congestion window. Thus, simply counting the number of inflight
packets without accounting for duplication or reordering will yield
an incorrect estimate of window size. Our first optimization is
to re-use TCP’s sequence number to identify and eliminate such
redundant and reordered packets.

– Window Emptying (WE): For reasons like TCP pacing, the
in-flight packets may not accurately reflect the current CWND. We
force the server to transition into a more synchronous mode by
batching ACKs and sending them at the end of the RTT to address
this class of issues. This batching ensures that when Inspector Gad-
get sends ACKs at the end of the RTT, the server’s window is empty,
and the number of inflight packets is a more accurate representation
of the server’s state. Although WE can lead to slightly inflated RTTs,
it has minimal effects on accuracy, as we demonstrate in Section V.

2) Step 2: Extracting cwnd Analysis: Given the cwnd trace,
the next step is to convert the traces into a time series of cwnd.
Recall, each CCA consists of three phases, and our vector captures
all three phases.

In capturing the vector, our goal is to consistently capture the
underlying invariants for a specific CCA. This implies that we
should not capture the raw cwnd because they may vary slightly
between runs. Instead, our vector (Equation 1) is divided into three
components one for each phase. Each component of our vector,
captures the cwnd trace as a series of offsets. In particular, for each
componnent, we capture each cwnd as an offset from the first cwnd
in the phase (e.g., Wl+2 - Wl+1, Wl+3 - Wl+1).

ν=(

l∑
i=1

Wi−W1,

x∑
i=1

Wl+i−Wl+1,

y∑
i=1

Ws+i−Ws+1) (1)
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ID Config{CC, ICW, IRTO coverage Popular
RWIN, HTTP, F-RTO} [%] CDN

1 {Cubic, 10, 1, 29200, 1.1, 1} 24% Fastly
2 {Cubic, 10, 0.3, 42780, 2,1} 17% N/A
3 {Cubic, 10, 1, 29200, 2, 1} 14% FBCDN
4 {BBR, 10, 0.3, 42780, 2, 1} 10% Google
5 {Cubic, 10, 1, 14600, 1.1, 1} 7.5% N/A
6 {Cubic, 4, 0.3, 29200, 2, 1} 7% Akamai
7 {Cubic, 24, 1, 29200, 1.1, 1} 5.8% Amazon
8 {Reno, 4, 1, 29200, 1.1, 1} 4% N/A
9 {Reno, 4, 1, 29200, 2, 1} 3.2% N/A
10 {BBR, 30, 0.3, 29200, 2, 1} 3% Cloudflare

TABLE III: Description of the top ten configurations.

3) Step-3: Protocols Classification: The last step is to classify
a protocol based on its cwnd-vector. To do this, we train a learning
algorithm, i.e., a decision tree. We select the decision tree over
alternative learning approaches for its ease, simplicity, and proven
effectiveness within the networking domain [35]. Our decision
tree classifier uses the CART algorithm [36]. We do not limit the
depth of the tree and use “entropy” information gain to measure
the quality of a decision node’s split. We show in Section V, that
using a learning algorithm improves the accuracy and effectiveness
of Inspector Gadget by allowing Inspector Gadget to generalize
and effectively classify protocols in the presence of protocol noise.

C. Inference Limitations

Central to Inspector Gadget’s accuracy is the task of reliably
collecting a sufficient number of clean packet traces from the target
server to extract cwnd vectors and infer CCA fingerprints. The
following practical issues limit Inspector Gadget’s ability to collect
these traces.
Large Object: Inference requires a long stream of packets from the
server. In addition to setting the MSS to a small value to increase the
number of packets transmitted (similar to [29]), we identify large
objects on a website by scraping the websites before fingerprinting.
Network Middleboxes: Proxies or application-layer middle-boxes
often terminate user connections; in such situations, Inspector
Gadget will infer the middlebox’s configuration instead of
the web-server. However, existing techniques for detecting
middle-boxes [37] can be used to identify such cases.
ECN-based Protocols: In our current design, we do not use ECN.
However, we note that our framework can identify ECN-enabled
TCP senders by extending the Options Parser, which we plan to
do in the future.
UDP-based Protocols: Although our current focus is on TCP, we
believe that our techniques can be extended to infer the CCA’s for
UDP-based protocols (e.g., QUIC).

V. VALIDATION

In this section, we validate the accuracy of our techniques.
Experiment Setup: To validate Inspector Gadget, we perform

controlled experiments where we run web servers in the cloud(AWS)
and the Inspector Gadget tool on a server on the east coast to finger-
print these servers. Since we have control over the cloud web servers,
we can determine the ground truth and validate our techniques. Addi-
tionally, by running the servers in the cloud and the Inspector Gadget
tool at our local campus, we ensure that we analyze Inspector Gadget
across realistic network dynamics. Additionally, we also used the

Linux traffic control tool to emulate different network conditions.
On our web servers, we run Linux 4.15 servers with Apache as the
web application, which hosts a 5MB file. We fingerprint each CCA
30 times for each network condition and request objects multiple
times concurrently to capture at least 4000 packets. We use 10-fold
cross-validation: we train Inspector Gadget’s decision tree classifier
on 90% of the data and test on the remaining 10%.

Related work DeepCCI [25] infers CCA based on packet arrivals
at the network’s bottleneck. To perform comparisons with DeepCCI,
we add a NAT to the front of our client to emulate a bottleneck
and synchronize the captured packet arrival times before and after
this bottleneck. Unfortunately, our analysis of DeepCCI is limited
because it comes pre-trained with models of three CCAs: Cubic,
Reno, and BBR.

Ablation analysis: We begin, in Figure 4, by analyzing the
impact of the different optimizations within Inspector Gadget on
its accuracy. For classification without a decision tree, we use con-
ventional feature extraction techniques. We analyze the trace to get
congestion control features like multi-decrease value or congestion
window offsets from the congestion avoidance phrase and use these
features for classification. We observe that without all our techniques,
accuracy falls by as much as 62.00% (in the worst case).

Among all three optimizations, the window estimation (WE) opti-
mization is the most important one. From Figure 4, we observe that
removing WE has a significant impact on prediction accuracy across
all CCA. We observe up to 31% false-positive rate in classification
in the absence of WE. Since the cwnd trace characterizes a CCA,
accurate cwnd estimation is the foundation of CCA inference. WE
is responsible for correctly synchronizing the start of each different
quantum in a cwnd trace. In its absence, the Sequence Check feature
may incorrectly disregard packets as being outside of the current
window. Moreover, in the classification step, both the decision tree
and feature classifier, rely on the information from the trace. If the
trace itself is inaccurate, the inference would also suffer.

Comparison against existing techniques: Last, in Figure 5, we
compare the accuracy of Inspector Gadget against three closest
related work (CAAI [30], Gordon [24] and DeepCCI [25]). CAAI’s
open-source implementation in unmaintained and does not support
TLS. Thereby, we reimplemented CAAI with support for HTTPS.

We observe that Inspector Gadget provides almost perfect
identification across various CCA implementations. With our
re-implementation of CAAI, we observe accuracy between 41%
and 94%. Although CAAI’s performance improves with our
optimizations, CAAI is still suboptimal to Inspector Gadget in all



scenarios. Additionally, with many essential CCAs, CAAI’s perfor-
mance is unacceptable, e.g., in BBR or Cubic, where accuracies are
78% and 64%, respectively. We observe that while Gordon provides
similar accuracy to Inspector Gadget in most CCA. However, in
particular, CCA, e.g., hstcp, it’s accuracy is as low as 50%.

To understand why Inspector Gadget outperforms the
competition, we analyze the different techniques. For CAAI, we
observe that CAAI emulates only two network conditions, both of
which are not sufficient to capture the distinctions among certain
CCAs. For example, Veno and Reno are identical except under very
narrow conditions, which CAAI is not able to capture. For Gordon,
we observe that the inaccuracies may be due to poor estimation by
Gordon’s congestion window size estimation algorithm.

Although we observed that DeepCCI works well
(accuracy>96%) across the three CCAs that it supports when server
and client are both hosted on the same cloud deployment (i.e., no
WAN interactions), however, it degrades when the WAN is involved.
For the scenarios where the client is in a university network and
the server in AWS’s cloud, the accuracy drops to 90-92%. This
is a severe limitation since the goal of such a tool is to fingerprint
configurations across the Internet. We believe that DeepCCI’s
performance is limited because it is trained using testbed generated
data, which lacks the Internet’s inherent noise. Further, we observe
differences in CCAs across different kernels (§ VI-F), and ideally,
DeepCCI’s model would need to be re-trained for different kernels
to capture such behavioral differences appropriately.

Takeaway: Our optimizations enable Inspector Gadget to tackle
protocol idiosyncrasies and network dynamics, which, in turn,
allows Inspector Gadget to out-performing the existing state of the
art techniques.

VI. CONFIGURATION CENSUS

In this section, we discuss the results of our empirical study of
the transport layer configuration values used by the Alexa top 5K
websites.

A. Global Configuration Census

We begin by analyzing the number of unique configurations.
We define a configuration as a specific set of parameters across the
transport and HTTP layer parameters listed in Table II. We observed
a total of 620 unique configurations across the 5K sites surveyed.
In Table III, we present the top ten configurations and observe that
they account for 92.06% of the websites, with three configurations
account for over 50% of the sites. Although there is significant
heterogeneity, many websites re-use common configurations. Note
that the top three configurations use the Linux default for CC and
ICW (Cubic with 10MSS).

B. Congestion Control Algorithms

Next, we focus on analyzing the impact of site ranking, country
(as captured by Geolocation services) and CDN (as captured by
CDN identification tool [29], [38]) on the distribution of CCAs
employed.

Regardless of the rank, we observe that Cubic is the most popular
choice (Figure 7). However, we observe that towards the lower
spectrum of popularity, there is an increase in the use of Reno and

a decrease of BBR. This can be explained by the fact that BBR is
currently adopted by the more popular sites, e.g., Google.

In analyzing adoption across regions, we observe a similar trend,
i.e., Cubic has the highest adoption (Figure 6). The critical difference
between the regions is that within N.A. (North America), Cubic
is dominant, and BBR accounts for a significant share of the CCAs.
Whereas in the other areas, Reno is often the dominant protocol with
BBR used by very few sites. Across CDNs (Table III) we observe:
(1) that CDNs use either Cubic or BBR, with Cubic being preferred,
and (2) that there are no CDNs using unconventional protocols 1.

Takeaway: We observe that across the different regions, ranks,
and CDNs, no single protocol strictly dominates. We find a stark
difference between North America, which is governed by newer
protocols and other regions that are still dominated by older
protocols. The implications are that any efforts to model, analyze,
and understand the performance and fairness of any protocol needs
to account for regional differences by creating per-region models
and performing per-region analysis.

C. Initial congestion window analysis

We observed that ICW ranges from 1 to 32 with three prevalent
modes: 4, 10 and 30. We observe a non-trivial set of websites (i.e.,
21.07%) are using the old default values of 4. We observe most of
these websites to be in the lower spectrum of popularity (100-10K).
10, being the Linux default and suggested by recent RFC [14], is
the most prevalent, with 55% adoption. We observe 30 to be the 3rd
most common ICW setting. A significant proportion of websites
to be using non-default values indicate explicit effort (tuning) and
can have implications, both for performance and fairness.

D. initRTO analysis

We observed three distinct initRTO values: 300ms, 1s, and
3s. The default initRTO value changed from 3s (RFC2988) to 1s
(RFC6298 [16]). While 3s is still used by a minority of websites
(7%), ∼34% of websites use 1s, including Amazon, Facebook,
eBay, Instagram, CNN, BBC, PayPal etc. Around 60% of tested
web servers use 300 ms as initRTO, much smaller than the
suggested value. These websites include Google’s search page for
various geographical regions, bing, youtube, office etc. The shorter
initRTO enables the web server to react more quickly to packet loss
and proves useful in high loss environments like wireless networks
or cellular networks.

E. Regional differences

Fingerprinting configurations in five regions, North America
(N.A.), South America, Asia, Europe, and Australia, we observe
that four regions (South America, Asia, Europe, and Australia) are
identical in their configurations. Whereas N. America behaves in
a distinctly different manner. For a set of websites, we observed
higher BBR adoption in N. America (N.A.) than the rest of the
world (Figure 6).

1Akamai uses FastTCP for certain network conditions; however, our emulated
network conditions fall into the range of conditions for which they use Cubic



Fig. 6: Protocols by region. Fig. 7: Protocols by ranking.

Web
service

TCP
CC

ICW # conn. RTO

rai.it Cubic 5 26 1
vimeo Cubic 10 1 1
sky.it BBR 10 19 1
pornhub BBR 10 17 1
other BBR 10 7 1
deezer Cubic 10 5 1
facebook Cubic 10 3 1
default Cubic 10 1 1

TABLE IV: Fingerprinted configurations.

F. Anecdotes and Protocol Quirks

During our measurements, we observed some non-conventional
behaviors:

• After a loss event, TCP dynamically sets SSThresh based
on cwnd at the moment of the loss. However, we observed
a kernel patch in Linux Kernel 3.18 RC5 violated the RFC
specification and reverted SSThresh to initSSThresh.

• We observed that for some kernel versions (4.3, 4.4, and 4.5),
TCP was stuck in a F-RTO loop, and cwnd remains fixed at
1MSS even after the retransmitted packets are acknowledged.

VII. CONFIGURATION SURVEY

We conducted a survey to understand better the current approach
that content providers and their operators take to tune their
networking stacks. The target audience of our survey are NANOG
members [39], a group of top network operators across the world.

Survey population: Individuals from six distinct organizations
(CDN/CSP) responded to the survey. The participants covered a
diverse range of CDNs/CSPs, with active users ranging from 10K
to over 100 million and server deployments ranging from 100
to over 10K servers. Three of the participants hosted over 1000
customers/services.

We summarize the highlights of the survey below:

• Do operators tune their networking stacks? Surprisingly,
all of the surveyed operators noted that they did, in fact, tune
the following parameters: TCP CC, ICW, TCP w mem, pacing,
queuing, and HTTP version2. Interestingly, one operator noted that
they tuned their TCP CCA configurations dynamically, with the
ideal CCA chosen based on end-user characteristics (i.e., AS) and
workload (i.e., object type).
• How do operators tune their networking stacks? The

surveyed operators followed one of the following two strategies for
finding the right configurations: (i) use the latest recommendations
provided by IETF, IRTF, NANOG, or the research community,
or (ii) select the configurations that provide the best performance
based on manual tests.
• Which features control configuration tuning? The top fea-

ture used by operators in our study is the workload, i.e., object type,

2tuning is defined as either using non-kernel default setting or customizing their
kernel implementation

Config Jain’s Jain’s
10MB 100MB

Default 0.99 0.99
Fingerprinted 0.88 0.85

±0.03 ±0.02
Fingerprinted 0.97 0.9
w. single
conn.

±0.01 ±0.02

TABLE V: Jain’s fairness for
the different configurations. Fig. 8: Performance comparison of the

best configuration against the default
configuration.

with the operators using different configurations for different work-
loads (e.g., web, video, etc.). However, four of the operators also
indicated that region (e.g., geo-location, AS) played a role in tuning.
• Do CDNs allow their tenants to tune transport protocols?

While anecdotal evidence suggests that some CDNs do enable their
tenants to tune configurations, surprisingly, the surveyed operators
do not allow their customers to tune these transport configuration
parameters. The operators cited fairness as a principle reason for not
exposing these tuning functionality. In particular, aggressive proto-
cols by one customer can harm other customers sharing the server.
• Inter-PoP/DC-facing vs user-facing connection tuning.

Three of the operators noted that they optimized inter-PoP/DC-
facing connections differently from user-facing ones, e.g.,
optimizations to re-use TCP connections efficiently, due to
differences in characteristics between these connections.

Takeaway: Our survey with the network operators suggests that
CDNs/CSPs significantly tune their networking stacks. Given these
observations, understanding the protocol heterogeneity is not only
crucial but required.

VIII. USE-CASES

In this section, we leverage our framework to analyze the Internet,
with a focus on understanding the fairness and performance-
optimality of the currently employed transport configurations.

A. Use-case 1: Fairness

Our goal with these experiments is to explore the impact of
configuration on fairness as captured by Jain’s fairness [40].

Experiment Setup: To emulate realistic conditions, we used
data from a large ISP traffic [41] to determine: (1) the distribution



of flows, (2) destination websites of these flows, and (3) popularity
of each website, i.e., number of flows for each website. Using
Inspector Gadget, we fingerprinted destination websites. We present
a summary of the fingerprints for the top 10 websites based on the
number of flows, in Table IV.

In our local testbed, we emulate a simplified version of this ISP
network with a single bottleneck link for all flows. We configured
each flow to use its fingerprinted configuration. To understand the
interactions between the network and configurations, we ran this
experiment with several different bottleneck link configurations and
explored the impact of object size on performance. To help ground
our experiments, we created two baseline experiments. The first,
called default, represents an experiment where the only thing we
changed was to force all connections to use the default configuration.
The second, called Fingerprinted w. single conn., represents an
experiment where representative configurations are used; however,
each website has only one flow. This second baseline equalizes the
websites and allows us to understand how they compete with each
other if they had an equal number of connections.

Results: In Table V, we present Jain’s fairness [40] for the
ISP connections, across different object sizes. We make several
observations. First, large objects result in higher unfairness when
different content providers are allowed to use different configura-
tions (column two is always larger than column one). Second, the
current state of the internet (at this large ISP) is unfair (row two);
however, this unfairness is significantly reduced if each website is
forced to maintain the same number of flows (column three).

Takeaway: These distinct observations highlight the need for
representative configurations and also for representative traffic. A
subtle observation from our results is that analysis with different
traces will yield fundamentally different results that may not
necessarily comport with each other.

B. Use-case 2: Configuration Optimality

In this section, we analyze the optimality of the current transport
configuration used by the top 10K websites. In particular, we aim
to answer the following question: “Are the current configurations
optimal across different network conditions? If not, how far is the
performance of each configuration from the optimal configuration?”.

Experiment Setup: Leveraging a testbed of 16 servers, we
performed a brute-force exploration of the entire configuration space
(i.e., TCP CC, ICW, RTO, HTTP version). For each combination
of configurations, we emulate representative network conditions
(i.e., cable, 3G, 4G, DSL, etc.) using NetEm and TC and set the
bottleneck buffer to the bandwidth-delay product. We use Linux’s
“sysctl” interface and “ip route” for tuning the configurations. We
load ten websites, picked randomly from Alexa top 100, five times
for each network condition and configuration, and measure page
load time (PLT). For each combination of website and network
conditions, we select the configuration that consistently provides
the lowest PLT as the optimal configuration. 3

Optimality Analysis: Figure 8 presents a comparison of the
fingerprinted configurations against two cases: (i) Linux’s default,

3different websites and network conditions may have diverse optimal
configurations as web performance is a function of a given network and webpage
structure [2], [3].

(ii) optimal for a given combination of website and network con-
ditions. We observe that for the median combination of website and
network conditions, the default and current configurations perform
comparable, and in analyzing the configurations, we discovered
that the median website currently uses the default configurations.
However, the default is not optimal, and these content providers
at the median can improve performance by as much as 10% by
switching from the default to the optimal configuration.

Additionally, at the tails, the performance difference becomes
even more pronounced. The current configurations perform worse
than the default (e.g., -15% at p10) and current configurations also
performs worse than optimal at the other tail (e.g., p99.99), indicat-
ing that current efforts to tune are suboptimal and can be improved.

Configuration Parameter Analysis: We conclude by analyzing
the individual configuration parameters to understand the relative
importance of each parameter. To measure the impact of tuning
specific parameters, we set all parameters except those being tuned
to their default setting. We observed that the top three knobs are:
HTTP version, TCP CC, and ICW. Additionally, simply tuning TCP
CC and ICW together, improves median PLT by 16% (as compared
to default) while tuning HTTP-only improves performance by 11%.

Takeaway: Our analysis shows that the diversity of network con-
ditions makes it challenging to pick optimal configurations. More-
over, existing techniques for choosing configurations fall short of dis-
covering the optimal ones and often find configurations that perform
worse than the default. We believe that our results raise an important
question. Namely, how can a content provider dynamically and au-
tomatically tune the configuration of her networking stack? To date,
this question remains an open question. We believe it will become in-
creasingly important as the number of network conditions continues
to grow and that websites continue to become complex. Our prelimi-
nary analysis shows content providers can reap the benefit of tuning
by designing a system that tunes even a small number of knobs,
which may reduce the barrier for entry for such tuning systems.

IX. CONCLUSION

There is a growing resurgence in research on improving web
performance by enhancing transport protocols. A necessary step
to evaluating and analyzing these efforts is to understand the
dynamic interactions of the proposed protocols with other protocols
(especially when competing for resources). Yet, today we lack
sufficient tools for understanding how these protocols are configured
in the wild and, in turn, what set of protocols to evaluate against
realistically. We envision a “laboratory-in-a-box” framework, which
includes tools to scan the Internet to infer configurations, including
a sterile emulator for analyzing interactions between protocols.

Inspector Gadget presents the first step towards this vision.
Inspector Gadget consists of a set of techniques for fingerprinting
and inferring the configurations of modern web servers. Inspector
Gadget also includes a set of analysis scripts and emulator-setup
scripts to configure and analyze interactions between protocols.
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