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Abstract—Recent studies of HTTPS adoption have found rapid
progress towards an HTTPS-by-default web. However, these
studies make two (sometimes tacit) assumptions: (1) That server-
side HTTPS support can be inferred by the landing page (/)
alone, and (2) That a resource hosted over HTTP and HTTPS
has the same content over both. In this paper, we empirically
show that neither of these assumptions hold universally. We crawl
beyond the landing page to better understand HTTPS content
unavailability and inconsistency issues that remain in today’s
popular HTTPS-supporting websites. Our analysis shows that
1.5% of the HTTPS-supporting websites from the Alexa top
110k have at least one page available via HTTP but not HTTPS.
Surprisingly, we also find 3.7% of websites with at least one URL
where a server returns substantially different content over HTTP
compared to HTTPS. We propose new heuristics for finding
these unavailability and inconsistency issues, explore several root
causes, and identify mitigation strategies. Taken together, our
findings highlight that a low, but significant fraction of HTTPS-
supporting websites would not function properly if browsers use
HTTPS-by-default, and motivate the need for more work on
automating and auditing the process of migrating to HTTPS.

Index Terms—HTTPS, Internet Measurements, HTTP/S Con-
sistency

I. INTRODUCTION

The importance and ease of deploying HTTPS websites
has increased dramatically over recent years. Recent studies
of HTTPS adoption have found rapidly increasing adoption,
leading some to speculate that most major websites will soon
be able to redirect all HTTP requests to HTTPS [1]. Indeed,
some client-side tools even go so far as to force all web
requests to be made via HTTPS [2].

However, to our knowledge, all previous work measuring
the deployment of HTTPS [1], [3]-[6] makes two basic but
fundamental assumptions: (1) They assess server-side HTTPS
support by looking at a single page: the domain’s landing page
(also known as its root document, “/”’), and (2) They assume
that any resource that is available over both HTTP and HTTPS
has the same content (in the absence of an attack, of course)—
that is, that the only difference between http://URI and
https://URI is that the latter is served over TLS.

Unfortunately, neither of these assumptions has been em-
pirically evaluated. This is important because, if they do not
hold, they threaten our understanding of how HTTPS is truly
deployed. For example, the fact that a landing page is (or is
not) secure might not necessarily indicate the security of the
site writ large. Moreover, if there are content differences be-
tween HTTP and HTTPS, then merely defaulting to the more
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Fig. 1: Examples of webpages with different content using
HTTP vs HTTPS.

secure variant—as many papers and tools have suggested—
risks unexpected side-effects in usability.

In this work, we empirically show that this conventional
wisdom does not universally hold. We identify inconsistencies
between HTTP and HTTPS requests to the same URI, in
terms of content unavailability over one protocol and content
differences between them. Rather than restrict our study to
landing pages, we conduct a deep crawl (up to 250 pages)
of each of the Alexa top 100k sites, and for a 10k sample
of the remaining 900k sites on the Alexa top 1M list [7].
We then analyze the retrieved pages to identify substantial
content inconsistencies between HTTP and HTTPS versions
of the same page, using a novel combination of state-of-the-art
heuristics.

We find that a small but significant fraction of sites have
content unavailability (1.5%) and differences (3.7%) for at
least one page on the website. Fig. 1 provides two examples
of how pages can differ significantly over HTTP/S. These
issues affect pages across all levels of popularity, with content
differences being slightly more likely on popular pages than
unpopular ones. While the number of pages per site with
inconsistencies is low on average, we find that such issues
affect more than 50 pages for 15% of sites analyzed. We char-
acterize common patterns for such inconsistencies, identifying
that pages on websites are unavailable due to partial support
of HTTPS (some directories are never served over HTTPS),
different versions of webpage content available only over one
protocol, and misconfigurations related to redirections and
hard-coded port numbers. In addition, we find that content is
different between HTTP/S for reasons such as HTTPS-support
“in name only” (default server page is returned over HTTPS),
redirections exclusive to one protocol, or misconfigured HTTP
status codes. Last, we return to the HTTPS adoption metrics



used in prior research and evaluate their efficacy in light of
our findings.

The main contributions of this paper are a large-scale mea-
surement to reassess the consistency of HTTPS support beyond
the landing page, new heuristics for automatically identifying
significant content differences between HTTP/S, a character-
ization of observed HTTP/S inconsistencies, and analysis of
mitigation opportunities. In addition to these main contribu-
tions, for the purposes of repeatability we have made our
efficient web crawler code, dataset, and analysis code publicly
available at https://github.com/NEU-SNS/content-differences.

II. RELATED WORK

Relevant HTTPS attacks and mitigations There are
severe security and privacy risks to users caused by a com-
bination of HTTP-by-default behavior in web browsers, and
limited deployment of HTTPS support (e.g., [8]-[10]). Prior
work argues for HTTPS to be supported on every page of a
website to mitigate these threats. In this paper, we investigate
whether sites conform to this approach (and discover signifi-
cant discrepancies).

To force a web browser to use HTTPS to access a site,
web servers may use HTTP Strict Transport Security [11]
(HSTS) and users can install extensions like HTTPS Ev-
erywhere in their web browser [2]. While potentially help-
ful, these approaches rely on manually maintained lists' of
(non)conforming websites that cannot scale to the entire web.
In light of such limitations, Sivakorn et al. [12] argue that
an HTTPS-by-default approach might be the only solution. In
this work, we identify that there remain a small but substantial
fraction of sites with HTTPS deployment gaps (including those
using HSTS) that must be addressed before the web is ready
for it.

HTTPS adoption  There is a significant body of work on
measuring HTTPS adoption using both passive data sets and
active scans (e.g., [1], [3]-[6]). Durumeric et al. [3] measured
HTTPS adoption using one year of repeated scans of the entire
IPv4 address space. In contrast, Felt et al. [1] conducted active
scans and combined them with passive browser telemetry
data—obtained from the Google Chrome and Mozilla Firefox
browsers—to provide server- as well as client-based perspec-
tives on HTTPS adoption. Overall, the results from these prior
studies indicate a steady trend towards HTTPS-everywhere.

However, they either implicitly or explicitly assume that if
the landing page is hosted via HTTPS then the same is true
for all of that website’s resources; and that when both HTTP
and HTTPS versions of a page are available, then the content
is the same across both. We can only speculate as to why these
assumptions were made (and we believe they were likely done
to reduce the crawling overhead compared to deep crawls with
content inspection); regardless, our motivation in this work is
to evaluate the impact of such assumptions.

!In case of HSTS, we are referring to the preload lists embedded in modern
browsers. Note that HSTS through a server header is trust-on-first-use.

Kumar et al. [13] explored how third-party dependencies
can hinder HTTPS adoption. In their study, 28% of HTTP-
only sites were blocked from migrating to HTTPS due to
their reliance on at least one HTTP-only third-party Javascript
and/or CSS resource. But their analysis also assumed that
resources available over both HTTP/S serve the same content,
as they suggested the other 72% sites to migrate to HTTPS
by merely updating the protocol in the resource URLs.

HTTPS Misconfigurations Fahl et al. [14] surveyed 755
webmasters of the sites with invalid HTTPS certificates, in
an effort to determine whether the behavior was intentional
or accidental. Two-thirds of the respondents admitted to de-
liberately using an invalid certificate, for reasons that include
using a custom PKI or administering test pages not intended
for real-world users. In this work, we find inconsistent content
and availability for HTTP/S-supporting websites and manually
investigate a sample of cases to understand their root causes.

III. METHODOLOGY

This section describes our measurement methods for crawl-
ing websites and identifying inconsistencies.

A. HTTP/S Inconsistencies

We focus our study on websites that support both HTTP and
HTTPS on the landing page. For this set of sites, we measure
whether there are different results when accessing the same
resource over HTTP and HTTPS. We categorize such cases of
inconsistencies between protocols as follows:

Content unavailability  This occurs when a resource is
successfully retrieved via HTTP, but not HTTPS (i.e., HTTP
status code >= 400,? or an error’).

Content difference  This occurs when a resource is available
over both HTTP and HTTPS, but the content retrieved differs
significantly (as defined in §III-C).

B. Crawling Overview

We limit our analysis to differences in HTML content served
by a website, which we refer to as pages, and do not consider
embedded resources (e.g., CSS and Javascript files). When
crawling a website, we conduct a depth-first search of all
links to other webpages with the same second-level (TLD+1)
domain—which we call internal links)—starting at the landing
page for the site.

The websites we crawled are a subset of the Alexa global
top 1 M domains. We chose this list because it represents sites
visited by users via web browsers [15]. Our analysis covers
all of the top 100K most popular domains. We supplement
this set with a randomly selected 10K sample of the 900K
least popular domains, since rankings beyond 100K are not
statistically meaningful*. For each domain, we crawled at most

%In Section IV, we show how some websites rely only on splash pages to
report a failure, instead of also returning an error status codes.

3Except for timeout or connection-reset errors.

4Alexa states that they “do not receive enough data from [their] sources to
make rankings beyond 100,000 statistically meaningful” [16].
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Fig. 2: Summary of our pipeline. We use a custom crawler for the full crawl, but rely on a real browser to detect any

under/overestimation of inconsistencies.

250 internal links to limit the load on websites induced by our
crawls while still covering significant fractions of site content.
We could not identify an efficient way to inform this limit
empirically, and picked this number to keep the crawl duration
at an acceptable length. Note that we consider only sites where
the landing page is accessible using HTTPS (and apply the
same restriction to subdomains of a site).

To conduct the crawl, we developed a (i) Python-based
crawler using the Requests [17], BeautifulSoup [18] and
HTMLS5Lib [19] libraries, and a (ii) Chromium-based crawler
using the Chrome DevTools Protocol. The former implementa-
tion does not attempt to render a page by executing JavaScript
and/or fetching third-party resources, and is thus considerably
faster, enabling us to crawl more pages in a limited set of time;
we use it for finding the inconsistencies across all websites and
rely on a real browser only for cross-validating our results.
The crawler visited each page using both HTTP and HTTPS
on their default ports (unless otherwise specified in an internal
link, e.g., via a port number in the URL). A summary of the
pipeline is presented in Fig. 2.

Identifying internal links To identify internal links for
a site, we first access the landing page of each website® at
the URL http://www. <website-domain-name>; for websites
that include a subdomain, we do not add the “www.” prefix.
We parse the fetched webpage and retrieve all internal links
(i.e., URLs from anchor tags in the page). We prune this
set of internal links to include only URLs that respect the
robots.txt file (if one exists). We also filter out URLs
from subdomains according to the subdomain’s robots.txt
file. Of the 110K sites in our original list, 4,448 were filtered
out due to robots.txt entries.

If the number of internal links retrieved from the landing
page is less than the maximum number of pages per site in our
crawl (250), we recursively crawl the website by following the
internal links to find more URLs. We repeat this process until
we have 250 URLs or we fail to find new links. Fig. 3a shows
the number of pages crawled per site, with the vast majority
of sites (86%) hitting the limit of 250 pages and 92% of sites
yielding 50 or more pages.

5The Alexa list only provides the domain name for each website, and not
the complete URL.

Ethical considerations Our crawler followed the “Good
Internet Citizenship” guidelines proposed by Durumeric et al.
[3]. We used a custom user-agent string with a URL pointing to
our project webpage with details on the research effort and our
contact information. We honored all robots . txt directives,
carefully spread the crawl load over time, and minimized the
number of crawls performed. To date, we have received only
one opt-out request from a website administrator, which we
promptly honored.

C. Identifying inconsistencies
We analyze the crawled pages for inconsistencies as follows.

Identifying unavailability = Despite being conservative in
the rate at which we crawl web pages, it is still possible
that some servers may block our requests. For example, they
may blacklist the IP address of the machine running the
crawler, and not indicate this using the standard “429 — Too
Many Requests” response status code. Additionally, we may
encounter transient Sxx error codes. Under such circumstances,
our analysis might misinterpret the temporary blocking as
content unavailability (i.e., a false positive).

To mitigate such false positives, one day after the initial
crawl we conduct a follow-up crawl of all detected cases of
content unavailability. The initial crawl visited each consecu-
tive page after the previous one finished loading, but for this
smaller crawl, we use a large (20 seconds) delay between
visiting consecutive pages. This follow-up crawl is designed
not only to avoid rate-limiting, but also changes the order of
fetches from HTTP-first to HTTPS-first to detect differences
in website behavior that are dependent on order of HTTP/S
access.

Our approach is susceptible to false negatives. Namely, if a
server permanently blocks our crawler IP address based on just
the initial crawl, the follow-up crawl would miss any potential
inconsistencies for that site. This assumes that blocking is
consistent for both HTTP and HTTPS requests.

Identifying significant content differences  While it is
straightforward to detect pages with non-identical content
using byte-wise comparisons, using this approach would flag
content differences between HTTP and HTTPS for pages that
are essentially identical (e.g., due to a difference in timestamp
at the bottom of a page) or have dynamic nature (e.g., a product
catalog page rotating featured items on each access). Thus,
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Fig. 3: Overview of crawling data.

to better understand meaningful content differences, we need
heuristics to help filter out such cases.

In particular, we use heuristics inspired by prior research
on near-duplicate detection for webpages [20], [21]. This
prior work did not provide open-source implementations or
sufficient justification for parameter settings, so we base our
own heuristics on three steps common to all of the prior work:

o Parse HTML content and remove nonvisible parts (e.g.,
markup [20] and headers [21]).

« Retrieve a set of word-based n-grams® from the remaining
content, ignoring all whitespace (n=10 [20] or n=3 [21]).

o For each pair of processed pages, compare the similarity
of their n-grams.

A limitation of prior work is that it is tuned to find near-
identical pages, while our goal is to find cases that are not.
Thus, our approach is inspired by the following insights. First,
we can filter out dynamic webpages by loading the same page
multiple times over the same protocol—if the page content
changes, then any such changes should not be counted when
comparing HTTP to HTTPS. Second, we observe that dynamic
pages often use the same page structure (e.g., use the same
HTML template) and the changes occur only in a small set of
regions in the document.

Based on these insights, we develop an algorithm for
calculating “distance” between two pages, which we then use
as a metric to quantify their differences on a scale of 0 to 1.
First, we parse the HTML document, filtering either all text
visible to a user,” or a list of HTML tag names (to capture the
page structure). Next, we transform the result into a set of 5-
grams. After getting such 5-grams for two pages, we compute
the Jaccard distance (i.e., the size of the intersection of the
two sets divided by the size of their union).

We then determine that there is a significant content dif-
ference between HTTP/S versions of a page if the following
properties hold with parameters «, 3,7 € [0, 1]:

1) The page-structure distance between HTTP and HTTPS,
is greater than ~.

6An n-gram is a contiguous sequence of n items from a given list. For
example, word-based 2-grams generated from “to be or not to be” include “to
be”, “be or”, “or not” and so on.

7Using the code found here: https://stackoverflow.com/a/1983219.

2) The visible-text distance between HTTP and HTTPS,
d-across-protocols, is greater than «. This filters differ-
ences appearing due to minor changes such as times-
tamps in visible-text, and/or cookie-identifiers in the
source.

The visible-text distance between the same page fetched
twice over HTTP + (3, is less than d-across-protocols.
This ensures that if a page is dynamic over HTTP, then
the difference it presents over HTTP /S must be greater
than the baseline difference due to dynamicity, by an
amount controlled by (3, in order for the page to be
counted in our analysis.

3)

We obtain and use the data for computing the distances as
follows. Our initial crawl loads each page over both HTTP/S
to find the ones with non-identical bodies. A day later, we run
a slow follow-up crawl only on the pages with non-identical
bodies over HTTP/S, to identify any false positives from the
initial crawl. For cases where non-identical bodies persist,
we then identify pages with significant content differences
satisfying the above properties. For assessing properties 1 and
2, we compare the HTTP/S versions of the page from the
slower crawl. For property 3, we compare the HTTP version
of the page from the initial crawl with the HTTP version of
the same page from the follow-up crawl.

This method provides us with an objective way of measuring
visual differences across pages served over HTTP/S, while
taking into account their inherent dynamic nature. We note
that whether a user actually finds a set of pages different is
subjective to some extent. For the purposes of this study, we
assume that the greater the visual differences across pages, the
greater the probability of a user also finding them different.

Fig. 3b presents a CDF of the visible-text distances for
all byte-wise non-identical sets of HTTP/S pages crawled.
The majority of pages (82.4%) have a visible-text distance
of 0, and are thus essentially identical. To validate this metric
and determine thresholds to use for significant differences, we
manually inspected more than a dozen pages at random from
the set clustered around O, and indeed find them all to have
minor differences that we would not consider meaningful.®

8For the sample size we used, the estimated fraction of pages with minor
differences in the cluster is 0.90 + 0.10, with a 95% confidence interval.



Type Description

Example

Misconfigured redirections
(82.6%)

Choosing a default protocol for all visitors, but
accidentally setting up redirections which do not
preserve resource paths.

developers.foxitsoftware.cn/pdf-sdk/free-trial gets redirected to the
website homepage if the request was over HTTP (instead of being
redirected to the requested page at HTTPS).

Unintentional support Accepting HTTPS connections without serving

meaningful content.

www.historyforkids.net presents default server page over HTTPS
accesses but provides site-specific content otherwise.

Misconfigured headers Incorrectly using the response status codes.

www.onlinerecordbook.org/register/award-unit returns 200 HTTP
OK status for both HTTP/S accesses, but the actual content at the
latter says “Page not found! The page you're looking for doesn’t
exist”.

Different versions Providing a potentially upgraded version at
HTTPS, which might have different content for

the same resource request.

video.rollingout.com provides different content at the index page of
the website based on the protocol used during request.

TABLE I: Characterization of content differences. The fraction of all pages with inconsistencies that fall into a category is

reported when available.

However, there is a long tail of remaining pages with poten-
tially significant visible-text differences—and it is possible for
two pages with few visual differences to be semantically very
different. The curve in Fig. 3b does not reveal any obvious
thresholds for detecting significant page differences, so we
provide results using a low threshold (« = 0.1, § = 0.1,
v = 0.4) that finds more inconsistencies, and a stricter, high
threshold (o« = 0.4, 8 = 0.2, v = 0.6) that finds fewer. These
thresholds for o are marked on the figure using vertical lines.

Although the selection of parameters entailed some manual
tuning, our root cause analysis indicates that this approach
worked well for identifying inconsistencies. Namely, in Sec-
tion IV-A, we attribute the vast majority of the identified
content differences (at least 82.6% of pages) to server mis-
configurations.

D. Limitations

Our analysis is likely a lower-bound for the prevalence
of inconsistencies. First, the crawler accessed only a limited
number of internal pages (Fig. 3a suggests at least 86% of
the websites have more than 250 pages). Second, we used
a single machine for all our experiments to avoid appearing
as a DDoS attack, and thus missed inconsistencies that (i)
could appear due to the presence of different replicas of servers
across geographical regions, (ii) would have been invisible to
us due to (any) rate-limiting encountered. Third, our Python-
based crawler could not execute JavaScript (JS), so we may
miss inconsistencies on pages that heavily rely on it for content
(we estimate this discrepancy in §1V). We finally note that the
study focuses only on inconsistencies in first-party content,
so we did not investigate differences in third-party dynamic
content fetched via JS (e.g., inclusion of advertisements),
and/or (ii) the impact of browser idiosyncrasies (e.g., HSTS
preload lists, mixed-content policies [22]-[24]).

IV. RESULTS

We performed the measurements in October 2019 from a
university network in Boston, Massachusetts (USA). From the
110K sites (the Alexa list in §III-B) investigated, our crawler
found at least one internal link for 68,369 websites available

over both HTTP and HTTPS. We plot the number of sites
excluded from the crawl due to various reasons, using bins of
10K websites, in Fig. 3c. The miscellaneous category includes
cases where our crawler encountered parsing errors, pages
relying on JavaScript, or a domain hosting only one page with
no internal links.

For the rest, we show the number of links crawled per site
as a CDF in Fig. 3a. The average number of internal links
captured and crawled was 225. The cluster at z = 250 is
due to the threshold we had set (§III-B), our crawler stops
searching for new links after the limit has reached.

A. Summary Results

We observe 1.5% of websites (1036 of 68,369) have content
unavailabilities, and 3.7% (2509 of 68,369) have content
differences (3.1% with stricter significance thresholds). For
websites with at least one inconsistency, the average number
of pages with inconsistencies is 31.9 and 27.2, respectively.
Fig. 4a plots CDFs of the number of inconsistencies per site,
showing that while most sites have few inconsistencies, there
is still a significant percentage of websites (15%) where we
find inconsistencies for at least 50 internal links.

We identify several root causes for these inconsistencies
by manually analyzing 50 random instances for both un-
availability and content differences. Tables I and II provide
a description and one example for each (the types represent
commonly observed behaviors, and do not represent a com-
plete taxonomy). We then label pages as (i) “Misconfigured
redirections” if their final URIs are different over HTTP
and HTTPS (i.e., after performing any redirections), and (ii)
“Fixed ports” if their URIs include port numbers 80 or 8080.
We note that it is not trivial to estimate the fractions for
all categories (e.g., assessing whether a webpage presents
meaningful content vs. a custom error page), and thus present
the fractions only for the two above types. Most of the cases
are server misconfigurations, and as such the corresponding in-
consistencies are likely easy to fix (e.g., by providing suitable
redirections). We note that two error types dominate content



Type

Description

Example

Misconfigured redirections
19.7%)

Fixing broken links through redirections, but only
over one protocol.

www.sngpl.com.pk/web/tel:1199 redirects to the website homepage
when accessed with HTTP, but presents a 404 Not Found otherwise.

Fixed Ports (8.7%) Embedding or enforcing port numbers in the URLs.

facade.com/content redirects to facade.com:80/content/, resulting in
a connection error on accesses over HTTPS.

Partial support Not supporting HTTPS at a portion of site content.

www.indiana.edu/~iubpc/, and all resources under the directory.

Different versions Providing a potentially upgraded version at
HTTPS, which might not require hosting resources

from the old version.

aedownloadpro.com/category/product-promo/ is only available at
the HTTP version of the site.

TABLE II: Characterization of content unavailability issues. The fraction of all pages with inconsistencies that fall into a

category is reported when available.
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Fig. 4: Inconsistencies are prevalent on a small but significant number of websites, and are not correlated with site popularity.

(LT) refers to Long Tail results.

unavailability inconsistencies; 404 Client Error (82.6%) and
SSLError (9.1%).°

Cross-validation with real browser  Our results could be
biased due to our reliance on a Python-based crawler that does
not execute JS instead of using a real browser. This could lead
to false negatives if HTTP/S differences are visible only to a
JS-supporting crawler, or false positives if differences are only
visible to our custom crawler.

We cross-validate our Python crawler’s results by comparing
them with the Chromium-based crawler, and found their
results to be highly consistent. Specifically, both pipelines
observed 95.8% of domains with at least one unavailability
inconsistency and 86.0% of domains with at least one content
difference (85.1% with stricter distance thresholds).

Upon manual inspection, we observed that domains with
inconsistencies visible only via the Python-based crawler
reflect (i) TLS implementation differences (e.g., minimum
TLS version allowed, certificate validation logic), (ii) presence
of <meta http-equiv="refresh">!" redirections in
page content and/or (iii) content differences that are less
significant when JS is enabled. While there are differences in
inconsistency results, as expected, our findings suggest that
a large fraction of inconsistencies observed by the custom
crawler are ones that also would affect users visiting sites via
web browsers.

9The remaining errors are various 4xx and 5Xx errors.
10An HTML-based instruction for web browsers to redirect to another page
after a specified time.

It is also possible that the Python crawler missed incon-
sistencies that manifest only through a browser. To estimate
whether this is the case, we used 100 sample sites in the
following way. First, Alexa Top 100k list was divided into
bins of size 1,000 each. From each bin, we found a sample site
that had at least 250 internal pages and zero inconsistencies
according to the Python-based pipeline. We fed these 100
sample sites to the Chromium-based pipeline to check for
any inconsistencies that manifest only through a browser. In
summary, we found no such inconsistencies.

More specifically, the browser did not flag any of these
websites with unavailability issues (its usage should not have
affected the availability of a page anyway), but it did find 5
with content differences (and only 1 site when using stricter
significance thresholds). Upon manual analysis, we found
all of these cases were due to normal web page dynamics
that surpassed our content-difference significance thresholds
(which were tuned for content based on a crawler that did not
support JS execution).

B. Factors Influencing Inconsistencies

Website popularity We test whether inconsistency rates
correlate with site popularity, and find that there is no strong
relationship between the two. Specifically, we distribute entries
from Alexa Top 100K list into bins of size 1,000 each, while
preserving the popularity rank. Note that we use a separate
bin for the 10K sample of the 900K least popular sites.
In Fig. 4b, we plot bins on the x-axis and on the y-axis
the fraction of websites with at least one inconsistency (the



denominator is the number of websites with at least one link
crawled). In Fig. 4c, we use the same x-axis, but the y-axis is
the average number of inconsistencies, for all websites with
at least one inconsistency. Content differences seem slightly
more likely on popular pages than unpopular ones, which
is somewhat counterintuitive since one might expect more
popular sites to be managed in a way that reduces content
differences. But one can visually see high variance in the
relationship between inconsistencies and popularity; further,
we compute the Pearson’s correlation coefficients and find only
weak correlations—not strong enough to infer that the rate of
inconsistencies depends on site popularity.

Self vs. third-party hosting  Cangialosi et al. [25] studied
the prevalence of outsourcing TLS management to hosting
providers, as it pertains to certificate issuance and revocation.
They find it to be common, and that such outsourced providers
manage certificates better than self-hosted sites. Based on this
observation, we investigate whether outsourced site manage-
ment also reduces inconsistencies between HTTP and HTTPS.

For the case of outsourced site management, we focus
on one ground-truth example: Cloudflare. We choose them
because they manage certificates for the vast majority of their
hosted websites.!! For other hosting providers, it is not clear
what percent of domains are being self-managed vs. service-
managed. We begin by mapping a server’s IP address to
AS number, then use CAIDA’s AS-to-Organization dataset to
retrieve the organization name. We then focus on the 20,131
websites whose server organization is “Cloudflare, Inc.” We
find content unavailability inconsistencies in only 0.6% of
these sites (a decrease of 60.0% as compared to the average
across all sites), and content-differences in 2.0% (a decrease
of 45.9%). Thus for this one example, Cloudflare management
seems to reduce inconsistencies (x> = 200 with p-value
< 0.00001 for Pearson’s test of independence).

We compare these error rates with the set of 3,977 identified
self-hosted websites. We define them as the ones whose orga-
nizations host only one domain from the Alexa 110k sites in
our analysis, and thus are either self-hosted or hosted through
a small provider.'” For these, we find content unavailability
inconsistencies in 4.5% of such websites (an increase of 200%
as compared to the average across all sites), and content differ-
ences in 8.5% (an increase of 129.7%). Thus, self-hosted sites
seem to be much more likely to have inconsistencies between
HTTP and HTTPS (x? = 226 with p-value < 0.00001).

We posit the following reason that might explain why third-
party certificate management can help reduce inconsistencies.
Prior work [25] suggests third-party services perform better
certificate management. They likely (i) can also notice server
misconfigurations comparatively earlier due to their large
number of customers and dedicated support staff, and (ii) have

! According to a recent investor report [26], ~97% of Cloudflare customers
use the free-tier product that provides only Cloudflare-managed HTTPS
certificates (consistent with estimates from prior work [25]).

2We manually analyzed a small sample of the 3,977 sites, and estimate
the fraction of them that are self-hosted (versus hosted via a small provider)
to be 0.79 £ 0.15, with a 95% confidence interval.

Inconsistency issues

Type Sources Total Unavailability Content-diff.
HTTPS Available [27]-[29] 74,778 741 (1.0%) 1933 (2.6%)
[30] 66,206 607 (0.9%) 1691 (2.6%)
Default HTTPS  [27], [30] 67,813 591 (0.9%) 1697 (2.5%)
[28] 16,221 99 (0.6%) 368 (2.2%)
HSTS Available [27] 17,557 108 (0.6%) 410 (2.3%)

TABLE III: Comparing HTTPS adoption metrics by calculat-
ing number of websites with issues over number of websites
fulfilling the metric criteria.

default TLS-related settings in place to reduce the chance of
accidental mistakes when a site is migrated to HTTPS.

Certificate issuing authority = We now investigate whether
the rate of inconsistencies is related to certificate issuing
authority (CA). We found that across all domains crawled
in the study, the most commonly used CAs are Let’s En-
crypt (LE; 21.6%), DigiCert (19.7%), Comodo (18.2%) and
Cloudflare (8.2%). But for domains with inconsistencies, the
shares change to 10.0%({), 31.6%(1), 15.1%(]) and 2.5%(])
respectively. As such, we did not see any clear trend indicating
how a CA can affect inconsistency rates.

C. Comparing HTTPS Adoption Metrics

Prior work identifies several metrics for characterizing the
extent to which a website supports HTTPS [1]. In Table III, we
compare our inconsistency findings with those metrics, using
the Alexa list (§III-B). In some cases, our crawls identified
inconsistencies on subdomains, but we exclude these from the
analysis to ensure a fair comparison. We find that there exists
a small but nontrivial number of sites where such metrics indi-
cate support for HTTPS/HSTS, but we identify inconsistency
issues. The results for HSTS are particularly surprising, as
users are guaranteed to be affected by inconsistencies since the
browser must fetch all content over HTTPS. A key takeaway
is that, for a more accurate view of website HTTPS support,
future scans should take into account inconsistencies and scan
beyond landing pages.

D. Summary and Discussion

While our findings provide a dose of good news about

the quality of HTTPS adoption on popular pages (the rate of
inconsistencies is low), the sobering fact is that there are still
a substantial number of inconsistencies—even on some of the
most popular websites. We now discuss the implications of our
findings, and why even a small number of page inconsistencies
is a finding that has broad impact.
Security Prior work argues for HTTPS support on every
page of a website. Thus even a single page with an unavail-
ability issue can undermine security for all others in a site,
as a single access to an insecure page (due to unavailability
over HTTPS) can be a vector to enable site-wide downgrade
attacks.

Usability  From a usability perspective, content differences
mean that a user on a HTTPS-by-default browser may view



content that the website owner did not intend to be shown.
This could lead to confusion, loss of revenue (e.g., for retail
sites with missing product pages or one that have incorrect
details), and user abandonment. A caveat for our study is that
we do not have any data regarding page popularity within a
site, so we cannot tell how many users are affected by pages
by content differences.

Persistency & Prevalence We found that the identified
many inconsistencies are persistent over time, and the total
number of issues is not getting better over time. To test this,
we ran a second crawl over the Top 100K websites four
months after the initial study and observed a similar-scale set
of consistency issues: 1.4% of websites with unavailability
issues and 3.6% of websites with content differences. Further,
the union of all websites among the two crawls was 2% for
unavailability issues and 4.8% for content-differences (with the
intersection being 0.9% and 2.4% respectively). This suggests
that although the issues affect a small portion of the web at
any given point of time, the problem is much more widespread
when considering the number of websites affected by it over
time.

V. CONCLUSION

This work explored whether websites counterintuitively
provide different results when the same URT is accessed over
HTTP and HTTPS. We found a small but significant fraction
of sites have inconsistency in terms of content availability and
differences, and this occurs across all levels of popularity. We
find that their root causes are often simple server misconfigu-
rations, and thus recommend automated processes to identify
and remediate these issues. Our findings also highlight that
moving web browsers to HTTPS-by-default would still incur
substantial problems for users and site accessibility, motivating
the need for more study on the impact of such approaches. We
argue that website administrators need tools like our crawler
to help them identify and mitigate inconsistency issues to
facilitate the transition to HTTPS-by-default. To encourage
this, our efficient web crawler code, dataset, and analysis
code can be publicly accessed at https://github.com/NEU-SNS/
content-differences.

APPENDIX

Here we provide minor implementation details and recom-
mendations for anyone trying to reproduce this work.

For Chromium-based pipeline, it is crucial that each page
is rendered in a clean environment. We observed that using
same user data directory, but launching incognito instances
via Target.createBrowserContext command properly isolates
history, cookies, HSTS directives and page cache. Our pipeline
opened each URL in a headless instance and waited for the
DOMContentLoaded event to get fired, then scrolled down the
page by 500 pixels and finally retrieved response headers and
page body.

While detecting any underestimation of inconsistencies, we
manually analyzed the flagged URLs (12 in total) to see
why they were only filtered out in the browser-based pipeline

and observed that 11 were due to the dynamic nature of
websites (note that JS was enabled this time; post-processing
with stricter significance thresholds ruled them out), and 1
was due to a JS-based redirection which would happen after
the website finished loading (causing our implementation to
occasionally return HTML for the navigated page rather than
original; triggering a false-alarm for content difference). Thus
besides scalability issues, using a real browser for a full-crawl
would also entail (i) choosing a set of different significance
thresholds, and (ii) establishing a robust criterion for when a
page should be considered loaded.

While detecting any overestimation of inconsistencies, we
excluded a small set of originally flagged sites for whom we do
not observe inconsistencies in either pipeline by the time we
run the third Chromium-based verification crawl. This could
either mean that site administrators fixed those inconsistencies
or that we ran into temporary rate-limiting for some sites even
during the slow follow-up crawl. Unfortunately, there is no
way of discerning between these cases.

For future crawls, we suggest using a browser only during
the internal links retrieval phase and then using the custom
crawler to detect inconsistencies.
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