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Abstract—In this paper, we illustrate the application of Mul-
tivariate Big Data Analysis (MBDA), a recently proposed inter-
pretable machine-learning method with application to Big Data
sets. We apply MBDA for the first time for the detection and
troubleshooting of network problems in a campus-wide Wi-Fi
network. Data includes a seven-year trace (from 2012 to 2018)
of the network’s most recent activity, with approximately 3,000
distinct access points, 40,000 authenticated users, and 600,000
distinct Wi-Fi stations. This is the longest and largest Wi-Fi trace
known to date. Furthermore, we propose a new feature-learning
procedure that solves an inherent limitation in MBDA: the
manual definition of the features. The extended MBDA results in
a methodology that allows network analysts to identify problems
and diagnose them, which are principal tasks to troubleshoot
the network and optimize its performance. In the paper, we
go through the entire workflow of the approach, illustrating its
application in detail and discussing processing times.

Index Terms—Interpretable Machine Learning, Multivariate
Big Data Analysis, Anomaly Detection, Big Data, Parallel Hard-
ware, Dartmouth Campus Wi-Fi

I. INTRODUCTION

Multivariate exploratory analysis has been recognized as an
outstanding approach in several domains, including industrial
monitoring [1], network security [2] and activity patterns
mining [3], marketing [4], weather modeling [5], bioinformat-
ics [6], food research [7], and so forth. In this methodology,
visualization, interpretation and data interaction are the prin-
cipal tools for an analyst to understand the problem the data
reflects. This is an alternative data-driven approach to the one
currently dominating machine learning, i.e., deep learning, in
which the model is built as a black box to approximate an
output of interest and little interpretation is left to the analyst.
This alternative approach to data analysis, recently referred to
as interpretable machine learning, has raised a lot of attention
of the research community in recent years [8], [9].

In this paper, we present an automatic-learning extension
and case study of the Multivariate Big Data Analysis (MBDA)
tool [10] as applied to monitoring and troubleshooting a
campus-wide Wi-Fi network [11]. MBDA is a complete mul-
tivariate anomaly detection and analysis approach, based on a
workflow of five steps, that can handle large amounts of data
from disparate sources. When an anomaly is identified, the
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output includes the log entries of raw information associated
with it. These, in turn, can be presented to the analyst, so
as to elucidate the root causes for the anomaly. In a context
where the number of log entries is massive (i.e., Big Data),
MBDA works as a magnifying glass, conveniently highlighting
anomalous events. As such, this is one of the first efforts done
so far to apply interpretable multivariate analysis in the context
of Network Traffic Monitoring and Analysis of Big Data [12],
[13].

Our contributions in this paper are as follows.
• We illustrate the application of MBDA to a real case

study, showing what it can provide to network analysts
and presenting the workflow in detail, including the
parallelization of the code and processing time results.

• MBDA has a main limitation: data features used in the
analysis are manually defined. We propose an automatic
feature-learning procedure, consistent with the MBDA
methodology.

• We incorporate state-of-the-art exploratory analysis visu-
alizations within the central step of MBDA, to make the
data more interactive.

The rest of the paper is organized as follows. Section II
introduces the data under analysis. Section III presents the
MBDA methodology in brief. Section IV introduces the learn-
ing procedure contributed. Section V illustrates the five steps
of MBDA in the Wi-Fi data. Section VI provides conclusions.

II. THE DARTMOUTH WI-FI NETWORK

Dartmouth College has a compact campus with over 200
buildings on 200 acres. The original evolution of the network
is documented in the series of early papers [14], [15]. In this
paper we analyse a data capture containing the connections of
users to the network in a seven-year time span: from 2012 to
2018 [11]. This data contains Simple Network Management
Protocol (SNMP) traps [16] sent from wireless controllers to
a collector. The capture reveals the statistics in Table I. The
data set contains a total of 5 Billion traps and 7 TB of data. A
total of 38K authenticated users and an undetermined number
of non-authenticated users have been connected to the network
in the last seven years, using 600K devices.

To collect the trace, the Wi-Fi network controllers forwarded
SNMP traps with a record of network activity to the Dartmouth
team’s servers. Figure 1 shows an example of an SNMP trap978-3-903176-27-0 c©2020 European Union



TABLE I: Details of the SNMP trap capture at Dartmouth
College.

Statistic Number
Capture period Jan 1st 2012 - Dec 31st 2018

(2556 days)
log entries (SNMP traps) 5 Billion
Data Size (raw) 7 TB
Access points 3,330
Authenticated Users 38,096
Stations 624,903
SSIDs 20

as received. Each trap comprises a header, with timestamp and
sender and collector information, followed by a variable num-
ber of triplets representing SNMP object identifiers (OIDs)
with the format ‘<OID> = <type>: <value>’ and separated
by hashes (#). OIDs are partly represented in ASN.1 notation,
which can be translated into more meaningful OID names
using the relevant Management Information Base (MIB). An
important OID is the trap type (TT), in which the value is
also an OID: ‘<TT> = OID: <OID>’. Please, refer to [11]
for more details on the data capture.

III. MULTIVARIATE BIG DATA ANALYSIS

MBDA makes use of two open software packages avail-
able on Github: the MEDA Toolbox [17], [18] and the FC-
Parser [19]. The FCParser is a python tool for the parsing
of both structured and unstructured logs. With the MEDA
Toolbox, multivariate modeling and data visualization can be
performed.

Intensive parsing requires a parallel computer. We used the
Anthill Compute Cluster hosted by the Computer Science De-
partment at Dartmouth. It is a 100 node, 1200 core, 4,288GB
RAM compute cluster, managed with the grid engine [20] as
parallelization software. Matlab and Python scripts using the
FCParser and the MEDA Toolbox, respectively, run on top of
the parallel hardware as grid jobs.

The MBDA approach consists of 5 steps:
1) Parsing: the raw data coming from structured and unstruc-

tured sources are transformed into quantitative features.
2) Fusion: the features of the different sources of data are

combined into a single data stream. In the example under
analysis there is a single source of data: SNMP traps.
Thus, fusion is not required.

3) Detection & Analysis: featured data is visualized and
anomalies are identified in time using Principal Compo-
nent Analysis (PCA) [5], [21] and Multivariate Statistical
Network Monitoring (MSNM) [22], [23], [24], [25].

4) Pre-diagnosis: the features associated with an anomaly
are found.

5) De-parsing: Using both detection and pre-diagnosis in-
formation, the original raw data records related to the
anomalies are identified and presented to the analyst.

The first three previous steps are equivalent to what it
is commonly done in other machine-learning methodologies.
However, steps 4 and 5, which perform the diagnosis of the

anomalies, are a major advantage of MBDA. These steps are
possible thanks to the white-box, interpretable characteristics
of PCA as the core of the MSNM approach in step 3). PCA
and associated visualizations provide a means to explore high-
dimensional data in a systematic way, easy to interpret in terms
of the connection between anomalies and features.

PCA transforms the original features into a lower number
of uncorrelated features: the so-called principal components.
The principal components are ordered by captured variance.
PCA follows the expression:

X = TA ·Pt
A + EA, (1)

where X represents the matrix of data, with N rows and
M columns, TA is the N × A scores matrix containing
the projection of the objects in the principal components
sub-space, where A << M is the number of principal
components, PA is the M × A loadings matrix containing
the linear combination of the variables represented in each of
the principal components, and EA is the N × M matrix of
residuals.

We call the PCA model in eq. (1) a matrix factorization,
since the information in X is factorized in the scores in TA,
the loadings in PA and the residuals EA. This factorization is
useful for visualization, because we can explore the distribu-
tion of the observations (rows) and of the features (columns) of
X in separate plots of TA and PA, respectively. The latter are
of much lower dimension than X, and so easier to visualize,
while they retain most of the information in the data.

Scores, loadings and residuals can be visualized using line
and scatter plots to gain data understanding. Also, the data can
be further compressed in a pair of statistics, the D-statistic
and Q-statistic, where anomaly detection can be performed
following the MSNM approach. The D-statistic and the Q-
statistic for observation n are computed with the following
equations:

Dn = tn · (ΣT )−1 · ttn (2)

Qn = en · etn (3)

where tn is a 1×A vector with the scores for observation n,
en is a 1 × M vector with the residuals, and ΣT represents
the covariance matrix of the scores.

As a summary, Table II describes the general data pipeline.
Steps 1) and 3) perform two steps of compression of the
data, first from raw data to features and then from features to
components/residuals using PCA and from these to statistics
using MSNM. Once anomalies are found, steps 4) and 5) allow
to identify the root cause in the raw information associated to
them.

IV. LEARNING COUNTS IN BIG DATA

As noted above, MBDA works as a magnifying glass into
massive amounts of data, with a configurable trade-off between
the level of detail for data visualization and the capability



Fig. 1: Example of an SNMP trap in the data capture. The second OID, highlighted by a rectangle, represents the trap type.
Parts of an IP and a MAC address have been hidden.

TABLE II: Summary of the five steps in MBDA.

STEP INPUT OUTPUT SOFTWARE
1. Parsing Raw data stream Stream of features per source FCParser
2. Fusion Stream of features per source Single feature stream FCParser
3. Detection Single feature stream Timestamps for anomalies MEDA Toolbox
4. Pre-diagnosis Single feature stream & Timestamps for anomalies Features for anomalies MEDA Toolbox
5. De-parsing Raw data stream & Timestamps & Features for anomalies Raw log entries for anomalies FCParser

for data compression. The key to this trade-off is the parsing
step, where we set the features and the time resolution for
the subsequent analysis. In the original MBDA proposal [10],
the features were manually defined. This represents a strong
limitation for the application of MBDA to increasing volumes
of data. In this paper, we define an automatic feature learning
procedure that is consistent with the parsing methodology in
MBDA. In the following subsection, we introduce the pars-
ing methodology and, subsequently, we present the learning
procedure.

A. Feature-as-a-counter parsing

MBDA makes use of the feature-as-a-counter (FaaC) ap-
proach [2] in step 1). Each feature contains the number of
times a given event takes place during a pre-defined time
interval. Examples of suitable features are the counts of a
given word in a log or the number of traffic flows with
given destination port in a Netflow file. This flexible feature
definition makes it possible to integrate, in a suitable way,
most sources of information.

To implement the FaaC, the FCParser defines variables and
features. Variables represent general entities in the data. In
the previous two examples, the variables would be word and
destination port. The features are defined for a specific value
of a variable. Examples of features would be word=‘food’
and destination port=‘80’. This representation in variables
and features has the relevant advantage that allows for the
definition of default features, e.g. word=<ANY>, useful to
count the instances of a variable, regardless its value, in a
data record.

Variables and features are defined using regular expressions
in configuration files, where we also set the time resolution of
the parsing. Each configuration file typically contains several
variables and several features per variable. The FCParser

applies this configuration to the data to compute a feature
vector for each interval of time present in the original data.
This is done using a multi-threading configuration to speed-
up computation. By selecting the time resolution and the
features, we define the trade-off between level of detail and
compression. Defining more features and/or using a lower
time resolution result in more detail, while defining fewer
features and/or using a higher time resolution leads to more
compression.

Take the example in Figure 1, which represents an SNMP
trap of October 28. One suitable variable to represent this data
could be the trap type, which corresponds to the information
enclosed in the red rectangle. The variable can be parsed using
a regular expression that identifies the string ‘snmpTrapOID.0
= OID: <trap type>’. To define features for this variable, we
have many choices. One choice is to define one feature per
different trap type in the data. Imagine there are 100 different
trap types in the data, and that we set the time resolution
to one day (as we do below, in the case study). Then, the
parser would pick all SNMP traps corresponding to October
28, count the number of instances of each trap type, and store
the result in a 100-feature vector that represents that day. That
way, we compress the logs of a single day (which may be
in the millions) into 100 counts. We can increase the level
of detail (or conversely compression) in two ways. First, we
may reduce the time resolution to, e.g., one hour, so that we
represent the entire day with a total of 24 feature vectors,
with 100 counts each. This increases the level of detail 24-
fold in comparison to a time resolution of one day. We can
also raise the time resolution for a higher compression, e.g., to
weekly or monthly time intervals, which is useful to manage
huge data sets where the number of days is too many for
proper visualization. Second, we can also control the level of



detail by increasing or reducing the number of variables and
features. For example, adding a feature for each single trap
type, as suggested above, may result in a representation that
is too sparse and a poor trade-off between compression and
detail. Alternatively, we can count only most common trap
types, say the top-most 9, and store the count of total traps in
a default feature. This leads to feature vectors with 10 features,
increasing the compression level 10-fold in comparison to
using 100 features.

The default features play a similar role to residuals in
PCA and MSNM. Both steps 1) and 3) in MBDA work as
lossy compression steps, which are fundamental to visualizing
data when the data volume is massive. However, when doing
anomaly detection, it is a good idea to include in the model a
summary of what is left out in the compression. This allows
the analyst to retain the ability to find uncommon patterns in
the residual part. A simplistic example of when default features
can be useful follows. Imagine we capture traffic from a
network where the main services are http (destination port 80)
and dns (destination port 53). To monitor the traffic, we define
two features: destination port=‘80’ and destination port=‘53’,
and a default feature destination port=<ANY>. During traffic
monitoring, there is a sudden burst of Internet Relay Chat
(IRC) traffic with destination port 6667, mixed into the stable
http and dns traffic. If we only consider the first two features
for anomaly detection, we cannot identify this burst, since the
counts of http and dns traffic remained stable. However, we
will see an increase of the counts in the default feature, as
a consequence of the burst. As follows from this example,
the default features are useful to detect general events, but
they are not very useful for diagnosis: in the example, the
default feature will be affected by any type of burst, but we
miss the information about the type of traffic that is causing it,
information that we do have for specific features. If something
anomalous is detected in a default feature and the analyst needs
to diagnose the problem, she can decide whether to redefine
features to account for the new situation or simply look at the
raw data for diagnosis.

B. Learning procedure

The original MBDA [10] relies in the manual definition of
the features in the configuration files of the FCParser. To write
such configuration files, the analyst needs to get familiarized
with the data. Let us come back to the example in Figure
1. To understand the best approach to code the SNMP traps
into variables and features, we need to get an idea of the
distribution of the OIDs in the entire data set: is the trap type
a good variable to represent the data? or conversely all the
traps correspond to the same type, and then this information
is useless? In a regular-size data set, we can identify useful
variables/features by visually inspecting the data and/or taking
simple statistics. Unfortunately, in a practical Big Data prob-
lem like the one under analysis, the data capture is simply too
massive for direct inspection. Besides, the fact that SNMP
traps are unstructured data, that is, traps have a disparate
structure of fields and values, renders infeasible the derivation

of simple statistics. If we want to obtain a good description of
the content, we need to apply an automatic feature-derivation
technique that can handle unstructured records. The definition
of this technique is not straightforward, since it needs to be
consistent with the subsequent multivariate analysis, so that
we maximize compression while retaining the observability
required for anomaly detection and diagnosis.

There are two basic properties we would like to have in the
learning procedure. First, the main sources of variance need
to be captured. Second, uncommon characteristics with low
variance should also be modeled somehow, in a summary of
residual information. The second feature is built-in to the FaaC
methodology with the definition of default features, as already
discussed.

We developed a learning algorithm to automatically identify
a list of common FaaC features in a Big Data set, and
included it in the FCParser repository at Github with the
name fclearning.py. The learning algorithm extracts the
features in the data ordered by their percentage of presence,
measured as the portion of the log entries where a feature
appears. It also defines default features and automatically
writes the configuration files.

We used this algorithm in two steps to identify high
variance OIDs in the Wi-Fi data. First, the algorithm was
parallelized in 2556 processing jobs, one per different day in
the capture. The resulting 2556 configuration files contain the
FaaC features with a percentage of presence above 5% during
that day. Second, these configuration files were combined in a
single configuration file, where we discarded all features with
variance below a threshold.1 This resulted in a total of 90
features, including default features.

The whole learning process using the parallel hardware and
multi-threading (4 threads per processor) took 12 hours, during
which a maximum of 150 jobs were processed in parallel. This
means that the processing time could be further reduced 17-
fold using a larger computer cluster, where as many as 2556
jobs could be run in parallel. The final combination of the reg-
ular expressions learned for variables and associated features
into a single configuration file took another 30 minutes.

V. MBDA IN ACTION

In this section, we discuss the application of MBDA to the
Wi-Fi data set using the learned features. The structure of the
section follows the steps in Table II. Since there is one single
source of data, the second step (fusion) is not necessary.

A. Feature extraction

We use the FCParser to generate the feature vectors with
the aforementioned configuration file learned from the data.
In agreement with the learning phase, we consider feature
vectors for intervals of one day. These contain the number
of traps, the total number of OIDs and the number of learned
features. This makes a total of 92 features. Each day in the
original SNMP capture is transformed into a feature vector

1We used a threshold of 0.01%, taking the variance in the number of log
entries per day as a reference.



we call ‘observation’, and each feature in the observation is
the number of times the corresponding element is found in the
traps of that day. This results in a compression of the data from
7TB to less than 1MB, yielding 2556 observations (days) of
92 features each in matrix X. The compression conveniently
transforms a Big Data set into a handleable data set by any
analysis package in a common computer. Again, we can vary
the level of detail by using different time resolutions or number
of features.

The parsing was parallelized in 2556 processing jobs, one
per day, and the whole process using the Anthill Computer
Cluster and multi-threading (with a maximum of 150 jobs)
took 15 hours.

B. Detection & Analysis

Basically, PCA factorizes the data X into a part for the
observations (the scores) and a part for the features (the
loadings), making the visualization simpler and more inter-
pretable. It compresses data, highlighting the main patterns of
variance. Therefore, by only inspecting a small set of principal
components, we can gain accurate insight into the data. For
the compression, the number of principal components to use
has to be determined. There are many methods to aid in
that decision [21], [26]. In our case, the data exploration is
barely affected by the selection of the number of components,
because we also visualize a summary of the residuals.
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Fig. 2: Illustration of interpretation in score and loading plots.

Once we have selected the number of principal components,
we can visualize the data using scatter plots of scores and
loadings. We can infer relationships between elements in
the data from their location in those plots. Figure 2 shows
a simple example of a score plot, where we can see six
points representing observations (rows in the data) scattered
around the center of coordinates. The relationship between
observations is revealed by the distance between observations
and the angle between vectors. Observations with low scores
are close to the center of coordinates, as illustrated with
observation 1, for which the plot does not provide much
useful information. Vectors with the same direction indicate
similarity, and the closer the points the more similar, as is
the case for observations 2 and 6. Vectors in the opposite

direction show an inverse relationship around the center of
coordinates, like observations 4 and 5. Vectors in different
directions reflect they are somehow different (not directly or
inversely related). Thus, observation 3 is different from the
group of 2 and 6 and from the group of 4 and 5. PCA is a
good visualization tool because it tends to separate different
elements in the data, providing a good description of their
differences. This property is useful: if the score plot highlights
different groupings of observations, we can conclude that there
is an underlying difference in the information content in the
features of these groups.

Loading plots are similar to score plots, but represent the
spacial distribution of features (columns in the data) instead of
observations. Again, clusters, trends or outliers can be identi-
fied in the loading plot, and lead to interesting conclusions
on the features’ distribution. We can also combine scores
and loadings in a single plot, commonly called a biplot [27].
Well-designed biplots allow similar comparisons in distance
and angle between observations and features. Thus, if one
observation is located close to a feature in the biplot, we expect
this observation to have a high value of that feature. This
property is useful to draw connections between the patterns
of observations and features: e.g., to identify which features
make an outlier different from the rest of observations.

The plots corresponding to the first 6 principal components
in the Wi-Fi data are depicted in Figure 3. For simplicity, we
show scatter plots of consecutive PCs, but other choices are
possible (e.g., we could show PC1 vs PC4). Recall that matrix
X contains 2556 rows, representing days of the capture, and
92 features. We present score plots at the left of the figure and
loading plots at the right. Visualizing score plots and loading
plots together provides a bird’s-eye view of the data. In the
score plots, points represent the 2556 days of the data capture
and are colored according to the year. In the loading plots,
(red) points represent the 92 features and, in order to facilitate
interpretation, we also plot a (gray) shadow of the scores, like
in a biplot.

Figure 3(a) represents the score and loading plot for PC1
vs PC2. These two principal components represent 68% (45%
+ 23%) of the variance in the data. Given that variance is a
measure of the variability within the data set, these two PCs
show the main patterns of change in X. As a matter of fact, a
variance of 68% roughly indicates that only 1/3 of the patterns
of variability in the data is missing in this plot, giving an idea
of how powerful PCA is for visualization.

The score plot at the left of Figure 3(a) shows that the
dots (days) with different colors are in different locations.
This means that they are different in content, from which
follows that there are large differences in prevalence of OIDs
in different years.

The loading plot at the right of Figure 3(a) can be interpreted
in connection with the score plot. Recall that in a combined
score/loading plot, the location of an observation (a day) will
approach the location of a feature (which represents counts of
a specific OID) as the value of that feature increases in the
observation. Thus, days with a large content on specific OIDs
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Fig. 3: PCA scores: PC1 vs PC2 (a), PC3 vs PC4 (b) and PC5 vs PC6 (c).

will be located closer in the plot to the loading representing
that OID. The loading plot shows that a large majority of the
features are located far from the center of coordinates towards
the right side. Therefore, any day toward the right in the score
plot will have a generally higher content of OIDs. Thus, as
we traverse from left to right in the score plot, the days will
have more connection activity. Busy periods are represented

towards the far right of the plot, and vacations are clustered
to the left, and we could say that the first PC (the horizontal
direction in the score and loading plots) represents the general
activity in the network. We annotated this in both plots using
a horizontal arrow.

The loading plot in Figure 3(a) also shows that the variables
are distributed from the bottom to top, and we see a similar



distribution for the different years in the score plot: the first
two years are in the bottom and the last two in the top, with
middle years in between. We also see a separated cluster of
days in 2018, highlighted with a circle. A closer look reveals
that all the days in the cluster belong to the period from
September to November, when eduroam replaced Dartmouth
Secure. The vertical pattern in the loading and score plots
shows that the distribution of traps has changed across the
years: days towards the top have a higher content of traps and
OIDs represented by the features in the top and less of those
in the bottom, and vice-versa. Again, we annotated this in
the score and loading plots using a vertical arrow. Questioned
about this difference, the network staff replied that there was
an update in the controllers’ software, which changed the
types of traps that were collected. This variability in traps
for different temporal periods makes the analysis of the data
a real challenge.

Figure 3(b) represents PC3 vs PC4. Here we see again
some differences among the years and the cluster of 2018.
We also see a set of consecutive days from 2017 that depart
from the rest of days, which is reflecting that something
unusual took place during those days. This type of pattern
is sometimes referred to as an excursion of scores. Another 2-
day excursion is shown in 2013. Both excursions are annotated
with an arrow. The corresponding loading plot is difficult to
interpret in connection with the observed deviations, but there
are additional tools [28], [29], [30] that can be used to provide
more information. The use of these tools will be illustrated in
the next step of the approach: the pre-diagnosis.

Figure 3(c), representing PC5 vs PC6, shows again the
excursion of 2017 and another one occurring both in 2012 and
2014. The loading plot allows us to associate the excursions
of 2012-2014 and 2017 to specific features (OIDs) annotated
with circles. The excursions of 2012 and 2014 are associated
to a high number of failures in the RADIUS server, and the
one in 2017 to a high number of restarts of APs. We provide
more detail below.

No additional information was revealed from inspecting the
next two principal components (not shown), so we decided to
stop the initial analysis here. Besides, the residuals account for
only 6% of the variance in the data, so we can be confident
that the main patterns of change are already in the previous
plots.

After the inspection of score and loading plots, one can
visualize a summary of the whole data distribution in one
single plot using MSNM: a scatter plot of the observations
in terms of the D-statistic and the Q-statistic. In this plot we
can also show upper control limits (UCLs) to facilitate the de-
tection of anomalies. UCLs leave below-normal observations
with a certain confidence level, e.g., 99%. They can be used as
hypothesis tests, so that all observations above the limits reject
the null hypothesis that they are normal. More information on
how to compute these limits can be found elsewhere [24], [22].

The MSNM plot for the Wi-Fi data is shown in Figure 4.
Anomalies are expected to surpass any of the two control
limits. This plot is optimized for anomaly detection, and the
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Fig. 4: Multivariate Statistical Network Monitoring (MSNM)
plot: D-statistic vs Q-statistic.

excursions mentioned before are clearly observed. However,
in the plot we miss other details, like the yearly and seasonal
patterns, as well as the difference in trap contents. A main ad-
vantage of this plot is that it also includes residuals, containing
the remaining 6% of the variance that is not accounted for in
the 6 principal components. The Q-statistic, which comprises
a summary of the residuals, clearly identifies the excursion in
2013 and another anomaly in 2012.

Regarding processing burden, the analysis performed in
this section is completely interactive in a regular computer,
meaning that the time to obtain each of the plots shown in
this section is in the order of seconds.

Note that the parsing (and thus of the learning process) has
a principal impact in the visualization and anomaly detection
of MBDA. For instance, we can only detect anomalies (e.g.
excursions) at the day level when using one-day resolution.
If we want to detect anomalies in other time resolutions,
we need to modify the parsing configuration. Furthermore,
differences in OID content can only be visualized if we include
features for those OIDs. Therefore, learning features of high
variance is paramount to obtaining accurate insights of the
data distribution.

C. Pre-diagnosis

The plots discussed in the previous step provide a general
view of the data and can assist in detecting patterns, like
trends, outliers, excursions or clusters. However, if we want to
have more detail on the interaction between observations and
features, multivariate diagnosis tools are more accurate and
easier to interpret.

There are many multivariate diagnosis tools [31], [32]. The
MEDA Toolbox includes the oMEDA plot for that purpose.
It is a bar plot of the features, built to compare two groups
of observations: e.g., to compare observations in an excursion
with normal observations. Each bar represents the difference



TABLE III: Pre-diagnosis of the excursions of 2013 and 2017
with oMEDA.

Timestamps Features selected
2013-12-14 – bsnDot11StationAuthenticateFail, bsnAuthenticationFailure,
2013-12-16 bsnDot11StationAssociateFail, bsnStationReasonCode,

bsnAuthFailureUserType, bsnAuthFailureUserName
2017-10-16 – ciscoLwappApIfUpNotify, ciscoLwappApIfDownNotify
2017-10-30 cLApAdminStatus, cLApSysMacAddress,

cLApPortNumber

between both groups in that feature. A positive bar implies that
the first group of observations presents a higher value in the
corresponding feature than the second group. A negative bar
reflects the opposite. A bar close to zero for a feature means
that both groups of observations have a similar value in it.
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Fig. 5: Pre-diagnosis of the excursions of 2013 and 2017 with
oMEDA.

To illustrate the use of oMEDA, we selected the excursions
in 2013 and 2017, which where shown as the main outliers
in the Q-statistic and in the D-statistic, respectively. The plots
are shown in Figure 5. Both plots indicate that each of the
excursions are related to a different set of features, meaning
that days within the excursions showed high prevalence of
specific OIDs, from which we infer that root causes for each
excursion are different. The specific OIDs are listed in Table
III. We can use this information to infer the root causes. Thus,
we determined that the first excursion is related to a large
number of Authentication Fails (a particular type of SNMP

trap), with a prevalence of one order of magnitude higher than
usual. The second excursion is related to an unprecedentedly
high number of re-starts of APs – two orders of magnitude
higher than usual.

As for 2018, the network staff did not have any additional
records for these old anomalies, besides the SNMP traps,
but they suggested that the second one could be related to
the installation of a security patch after the publication of a
vulnerability. Recall that on 16 October the famous KRACK
attack against WPA2 [33] and the corresponding patch were
released to the public. Even if a restart is necessary after
a patch installation, the number and duration (15 days) of
the event is remarkable, evidencing that a major management
activity took place.

Again, the pre-diagnosis step is complete in seconds and
easily done in a regular computer.

D. Deparsing
While the visualizations already provided to the analyst

are informative, it is a good idea to identify the raw log
entries related to the patterns found to obtain more detail
about them. At this point, MBDA works as an aid that allows
analysts to make the most of their time by focusing on the
relevant information alone. Using the raw logs retrieved, we
can provide some additional interpretation with our preferred
log analysis tool.

The deparsing algorithm [10] takes as inputs the timestamps
of a given anomalous pattern, detected in step 3), and the
features associated with it, identified in step 4). With this
information, the FCParser matches the regular expressions of
the features in the specific raw data files. The output is the
set of raw log entries that matches at least one of the features,
ordered by the number of features they match. With these log
entries, the analyst can extract detailed information about the
anomalies.

The deparsing algorithm was applied to the excursions in
2013 and 2017 in the Wi-Fi data set. We parallelized the
processing using the Anthill Computer Cluster and multi-
threading (4 threads per processor), an with as many parallel
jobs as days in the excursions. The first excursion took 30
minutes to be processed and retrieved 5.4M traps, and the
second one 135 minutes, retrieving 19M traps.

VI. CONCLUSION

In this paper, we show a case study of the application
of the Multivariate Big Data Analysis (MBDA) tool. The
application is concerned with the detection and diagnosis
of communication failures in a Wi-Fi campus network. The
results illustrate that MBDA can bring light into complex
massive data sets.

MBDA can work on top of parallel hardware in order to
speed up computation. We analyzed 7TB of data in a little
more than a day, and this time can be reduced to a couple of
hours in a high-throughput cluster. To handle Big Data with
MBDA, we had to extend the original methodology with a
new feature-learning procedure, which is a main contribution
of this paper.
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