
Path Transparency  
What is it, and why should we

care?
Mirja Kühlewind <mirja.kuehlewind@ericsson.com>

TMA PhD School, June 18, 2019, Paris

This work was performed within the H2020 project. See https://mami-project.eu

mailto:mirja.kuehlewind@ericsson.com
https://mami-project.eu

Preparation for Part II

Install git, vagrant, and virtualbox and:

git clone https://github.com/mami-project/pathspider-MNM19.git

Note: This is a private repo with specific configurations for this tutorial. The VM image in this repo is preconfigured
to use a university VPN server in order to avoid problems with the local network. This VPN is only available during
the tutorial. Please do not share this repo further, but the use the official PATHspider in future instead: 
 
https://github.com/mami-project/pathspider

https://github.com/mami-project/pathspider

Overview Part I
• Why measure the Internet and how?

• Internet Measurement Architecture

• Tools for Active Measurement

• What is Path Transparency?

• PATHspider as an active measurement tool

• Some Examples and Results

• What to do with all the Measurement Data?

• Path Transparency Observatory

Overview Part II

• Hands-on work with PATHspider

• Let’s start some measurements!

• Target Lists using Hellfire

• PATHspider Plugins

• Use of scapy for packet forging

• Observations and Analysis

Why measure the Internet?
• Operations: keep the Internet working

• "What's broken?"

• "Who's attacking me?"

• "Are things working as expected; if not, why not?"

• "How should we plan future expansion of our network?"

• Research: understand the Internet as a phenomenon in itself

• "What does the network look like?"

• "How will the network look tomorrow?"

• "Hm, that's interesting, what's that?"

• Engineering: support protocol design decisions with data

(Path transparency is primarily motived by the third, but the techniques
we'll explore today are applicable to all three activities)

Leonardo Rizzi CC-BY-SA

Privacy and Good Practise
• “Strategies for sound internet measurement”, Vern Paxson, 2004. In Proceedings of

the 4th ACM SIGCOMM conference on Internet measurement (IMC '04).

• http://dx.doi.org/10.1145/1028788.1028824

• Calibration and meta data

• Reproducibility, handling of large data set, and making data publicly available

• Aggreation, Minimization, and IP Address Anonymization to address Privacy Risks

• https://datatracker.ietf.org/doc/draft-learmonth-pearg-safe-internet-measurement/

• Tor Metrics (https://metrics.torproject.org): “Analyzing a live anonymity system

must be performed with great care so that the users' privacy is not put at risk. Any
metrics collected must not undermine the anonymity or security properties of the
Tor network.”

http://dx.doi.org/10.1145/1028788.1028824
https://datatracker.ietf.org/doc/draft-learmonth-pearg-safe-internet-measurement/
https://metrics.torproject.org

Active versus Passive Measurement
• Active measurement uses dedicated measurement traffic to induce a measurable reaction

from the network and/or far endpoint.

• Examples: ping, traceroute, everything RIPE Atlas does

• Tradeoffs: you can measure what you're aiming at, but (1) you might not be measuring
exactly what productive traffic sees and (2) you have to pay the overhead of unproductive
measurement traffic.

• Passive measurement observes productive traffic and draws inferences about the state of
the network and endpoints from what it can see.

• Example: IPFIX, wireshark

• Tradeoffs: what you observe is what you get, but you can only choose paths
opportunistically, and you have to be very careful not to over-observe (end-user privacy).

(We focus today on active measurement.)

Context in Active Measurements:
tradeoffs in selecting vantage points

• Increasing choice in vantage points:

• Active measurement networks (e.g. RIPE Atlas); including residential
measurements (e.g. mLab) and mobile testbeds (e.g. MONROE)

• Mesh of testbed nodes (e.g. Planetlab, Ark)

• Core endpoints (e.g. DigitalOcean, AWS) toward public/uncontrolled
targets (e.g. Alexa TopN)

• Crowdsourcing can provide targeted endpoint with specific
characteristics

Measurement Networks (e.g. RIPE Atlas)

• Many (thousands) of small probes
hosted on (often volunteer) networks
allow shared access to simple active
measurement infrastructure

• Advantages: scale, ease of use,
diversity in network access

• Disadvantage: limits on the kinds and
scale of measurements that can be
done.

Testbed Mesh Measurements (e.g. PlanetLab)

• Advantage: full control of both
endpoints (path isolation and two-way
tracing are possible)

• Disadvantage: hard to set up, testbed
networks tend to be non-
representative.

pl1

uni

ark3

pl2

ark4

Core to Public Measurements
• Generate a list of public

targets and measure it from
multiple vantage points

• Advantage: the cloud
scales nicely

• Disadvantages: one-sided
measurement, inference
required based on protocol
behavior, toplist bias, not
useful for access network
behavior.

ams3

fra1

sfo1

google.com

amazon.com

facebook.com

netflix.com

wikipedia.org

longtail.example.com

toplist

(e.g. Alexa)

Crowdsourcing

• Pay people to run small measurement tools from their own Internet
connections.

• Advantages: large diversity of access network connectivity.

• Disadvantages: usually non-expert workers, so tooling needs to be
packaged to be easy to use in very diverse endpoint environments, bias
difficult to quantify.

Tools for active measurements
• Community uses a limited set of powerful tools

or

• "let me hack up this quick little script"?

• Using a common set of tools makes measurements more comparable and
reproducible

• I don't need to get your toolchain up and running to run your

measurement on my network

• When we all use the same tools, we all understand the limitations

client

In the beginning, there was ping,
and it was good.

• Send an ICMP Echo Request, expect a corresponding ICMP Echo Reply.

• To measure* two-way latency: RTTping = trecv - tsend

• To measure loss** RTTping ≅ ∞ → lost

server

echo
request

echo
reply

echo
request

echo
reply

echo
request

*Might not measure what you want: ICMP traffic may be handled differently from productive traffic; ICMP terminated by the kernel, so
doesn't correspond to application status.

**No way to split forward from reverse path: bad for localizing faults.

server

S

router

A

router

B

traceroute: making educated guesses about where
the packets are going

• Send (ICMP, UDP, TCP) packets with a TTL lower than the number of hops between the source and the
destination.

• For TTL n, the nth hop* away from the source should** send back an ICMP Time Exceeded message.

• Do this iteratively to make a list*** of hops on the forward path**** with RTTs.

client

C

C→S

ttl 1

Time
Exc.

A→C

C→S

ttl 2

Time
Exc.

B→C

C→S

ttl 3

Port Unr.

S→C

* where "hop" means "a router that speaks IP and decrements TTL"; tunnels are invisible 
** ICMP is considered by some to be "reconnaissance activity", and therefore blocked at network borders 
*** this list may or may not have any relationship to actual connectivity between routers, as a router may use any of its addresses to reply from, and using parts of the flow key
to identify different hops will cause traceroute packets to take (wildly) different paths in the presence of ECMP (see Paris Traceroute). 
**** no way to split paths: only the forward path is visible (but see various Reverse Traceroute schemes)

If this sounds like a hack, that's because it is.

router

H

router

E

router

F

router

G

router

J

Paris traceroute: making even better guesses
about where the packets are going

• Equal-cost multipath routing (ECMP) leads to multiple paths for the same source-destination pair...

• ...hashing on fields that traditional Traceroute uses to identify hops

• Paris traceroute addresses this by holding flow identifiers constant.

server

Sclient

C

C→S

ttl 1

Time
Exc.

E→C

C→S

ttl 2

Time
Exc.

F→CC→S

ttl 3 Time
Exc

J→C

Tracebox: getting the path to tell you how it's
messing with your packets

server

S

router

A

router

B

client

C

C→S

ttl 1

Time
Exc.

A→C

DSCP
46

C→S

ttl 2

Time
Exc.

B→C

DSCP

0

C→S

ttl 3

Port Unr.

S→C

DSCP

0

Path transparency measurement
(a specific active measurement task)

• End-to-end principle: a maximally capable network made of
smart endpoints connected by dumb pipes

➡ A path is transparent if packets come out the other end
of the pipe unchanged

the Internet

client

server

firewall/rp

accelerator

NAT

• This is not how things actually are, especially at layer 4:

• Network Address Translation (NAT)

• Extension and TCP option blocking and stripping

• TCP ACK/SEQ rewriting

• etc, etc, etc, etc…

➡ Middlebox functions can impair the connectivity and
treatment of end-to-end traffic

Why measuring Path Transparency?
• More data about the nature and quantitive distribution of path

impairments need as input for the design of protocols and protocol
extensions that can deal with interference

➡Framework for measuring various different path impairments

• Combining disparate measurements leads to better insight

• e.g. own measurement data, traceroutes, BGP, traces

➡Common data model for storage and analysis of path

impairments

How to measure Path Transparency?
• Controlled experimentation (A/B testing)

• Compare "vanilla" traffic to some feature under
test

destinationsource

coordinator

source

source

source

destination

X

• Ideally, control both endpoints

• Compare packets send to packets received

• To scale, infer path behavior from the destination's
response

• or induce routers to send us a response (traceroute)

• Compare results from multiple vantage points

• infer on-path versus on-endpoint or near-endpoint

interference

destinationsource

PATHspider 2.0  
https://pathspider.net/

• Generalized framework for A/B testing

• Plugin-based architecture with plugins
available for

• ECN connectivity and negotiation

• DiffServ Codepoints

• TCP Fast Open

• …

https://pathspider.net/

• Generalized to support more than just A/B testing

• Any permutation of any number of tests now possible!

• PATHspider’s is now using cURL for HTTP requests -> faster

• Framework for packet forging based plugins using Scapy

• Completely rewritten (in Go) target list resolver

• Faster target list IP address resolution!

• Observer modules usable for standalone passive observation or analysis!

• See https://github.com/mami-project/pathspider/tree/2.0.0/

• Or https://pathspider.net

PATHspider 2.0 new Features:  
https://pathspider.net/

https://github.com/mami-project/pathspider/tree/2.0.0/
https://pathspider.net
https://pathspider.net/

Path Transparency Observation
• An observation is an assertion that at a given time, a given condition, held on a

given path (optionally associated with a value):

 ["0","2014-08-28T22:41:02Z","2014-08-28T22:46:25Z",  
 "* 82.192.86.197","ecn.multipoint.connectivity.works","3"]

• A condition is some state of an aspect of a feature observed on a network 
e.g. ”ecn.connectivity.works” or ”ecn.negotiation.reflected”

• Feature: what protocol or feature are we trying to use?

• Aspect: what question are we asking about the feature?

• State: what happens when we try to use it?

• States are mutually exclusive for a given aspect on a path at a given time.

Paths
• A path is a sequence of path elements (IP addresses, prefixes, AS numbers,

pseudonyms, or wildcard) on which an observation was taken

• For active measurement: first path element is the source or device sending
traffic, last path element is the target or device under test.

e.g. [digitalocean-ams3 * 104.24.127.228]  
 
or [128.10.18.52 * 209.200.170.230 204.106.55.245 * 159.45.6.20]

Scaling Path Transparency Measurement

• With PATHspider, we can do…

• measurements from a single machine

• in a single run

• How to compare measurements...

• from multiple vantage points

• across longer time scales?

• Centralize analysis in a  
Path Transparency Observatory

target

server

Role of an observatory
• Provides a central data repository to store data together with metadata,

tracking provenance.

• Makes it easier to share intermediate and final results.

Hey, I have this really  
cool measurement! Cool, can I have  

your data?

Hm, where is my data again…  
it hard to understand anyway…

actually I am not allowed to share.

Design of the  
Path Transparency Observatory (PTO)
• Raw data submitted to the observatory

 …by value or reference

• Normalizers convert raw data to
observations, controlled by raw metadata

• Analyzers create derived/combined
observations from (lower-level) observations

• Observations stored in a common schema,
grouped into sets that share metadata

• Queries over observations are always
temporally scoped, and can be cached for
permanent reference.

analysis stage

raw data storage

observation query

raw data

metadata

normalizeranalyzer

query
runtime

observation storage

metadatametadata

observations

metadata

query
cache

raw data
source

metadata

Design Goals of the PTO
Measurement data observatories can support better science through the
following design goals:

• Comparability: allow the results from diverse tools to be expressed in the
same vocabulary so they can be compared.

• Repeatability: keep enough metadata around so that future users of the
data know how to repeat the experiment.

• Protection: reduce information in raw data to only that needed for a
particular analytical task.

Supporting Repeatability: Provenance

• Every object refers to its
antecedents

• Following these links back from a
query or observation set results in
a provenance tree.

• This provenance tree is, in effect, a
set of instructions for recreating a
given observation set.

obs 1 obs 6 obs 7

obs 5 obs 4

obs 3obs 2

raw A raw B raw C

query X

analysis Q analysis R analysis Tanalysis S

Metadata Flow
• PTO's design is metadata-first:

• All additions consist of a metadata phase,

then a data phase.

• Normalizers and analyzers are controlled

indirectly by raw and observation set
metadata.

• Data is immutable, but metadata can be
updated.

• Arbitrary metadata: we don't know as well as
the users what will be useful in the future.

analysis stage

/raw API

raw data
(file storage)

metadata

normalizer

PUT campaign/file GET campaign/file

/obs API

PU
T
se
t

metadata

observation
DB (PgSQL)

metadata

PTO RESTful API
• Raw data is stored as files in original

output format of each tool/source

• "metadata first"

• Analysis stage derives observations
in a common schema

• organized into sets sharing

provenance and other metadata

• Flexible query engine to access
observation storage

• allows query results to be cached

and annotated for publication

analysis stage

/raw API

/query API

raw data
(file storage)

metadata

normalizer

PUT campaign/file

PUT campaign/file/data

analyzer

query
runtime

GET campaign/file

GET campaign/file/data

/obs API

P
U
T

se
t

G
E
T

se
t

P
U
T

se
t/
d
a
t
a

G
E
T

se
t/
d
a
t
a

metadata

metadata

observation
DB (PgSQL)

metadata
POST submit

GET query

GET query/result
query
queue

query
cache

metadata

Querying Observations
• Code: https://github.com/mami-project/pto3-go

• Doc: https://github.com/mami-project/pto3-go/tree/master/doc

• Web frontend: https://observatory.mami-project.eu

• e.g. GET https://observatory.mami-project.eu/query/submit?  
 time_start=2014-01-01T00%3A00%3A00Z&time_end=2020-12-31T23%3A59%3A59Z&aspect=ecn.connectivity

Parameter Semantics Meaning
time_start temporal Select observations starting at or after the given start time
time_end temporal Select observations ending at or before the given end time

set select Select observations with in the given set ID
on_path select Select observations with the given element in the path

source select Select observations with the given element at the start of
the path

target select Select observations with the given element at the end of
the path

condition select Select observations with the given condition, with
wildcards

group group Group observations and return counts by group
option options Specify a query option

https://github.com/mami-project/pto3-go
https://github.com/mami-project/pto3-go/tree/master/doc
https://observatory.mami-project.eu

Explicit Congestion Notification (ECN)
(a specific "new" feature we'll measure today)

TCP extension allowing routers to signal congestion using bits in the IP header.

Client Server

SYN+ECE+CWR

SYN+ACK+ECE

A + ECT0

A + CE A + ECT0

• Client attempts to negotiate ECN
with TCP flags

• Server acknowledges negotiation
and begins signaling ECN
Capable (ECT0)

• Routers on path can mutate
ECT0 to CE to note congestion
(instead of tail dropping)

• Client echoes CE, server acks
reduction of congestion windowRouter

ECE

CWR

Connect with and without ECN

The History of ECN
• Defined in RFC 3168 in 2001

• Reused two bits from old IP TOS byte for ECT/CE signaling in the IP

header

• Deployment was slow due to early problems

• ECN-marked traffic caused some routers to reboot

SYN

SYN/ACK

1. ecn.connectivity.status
works: off + on OK

broken: off OK, on fails

transient: on OK, off fails

offline: no connection

PATHspider

Example study:
ECN PATHspider Plugin

ECN off ECN on Target

SYN + ECN

SYN/ACK
SYN/ACK + ECN

A + ECT0

A + CE 2. ecn.negotiation.succeeded/failed

3. ecn.ipmark.ECT1/ECT0/CE.seen/not_seen
CE = Congestion Experienced; ECT = ECN Capable Transport

ECN support on webservers (Alexa 1Mio)

0 %

25 %

50 %

75 %

100 %

2000 2003 2006 2009 2012 2015 2018

1,35 % 0,32 % 0,24 %0,21 %

47,52 %

65,41 %

76,77 %

95,23 %96,99 %

8 %
1 %

17,2 %

29,48 %

56,17 %

68,78 %
73,87 %

80,17 %

IPv4
IPv6
no conn w/ECN

Enhanced ECN PATHspider plugin

• Goal: detect mangling of the IP ECN codepoint as well as DiffServ codepoint  
(set to 46=Expedited Forwarding)

• 4 TCP connections

• Baseline: TCP SYN without ECN negotiation attempt

• TCP SYN with ECN negotiation + no ECN IP codepoit (Not-ECT)

• TCP SYN with or without ECN negotiation + ECT(1)

• TCP SYN with or without ECN negotiation + CE

Used to be 8-bit Type of Service (ToS) field

ECN negotiation with IP ECN codepoint
• 69.35% only negotiated ECN when the ECN IP codepoint was set to zeros

(non-ECT) but not if ETC0 or CE was set

• Only 12.79% of the hosts negotiated ECN no matter what codepoint was
set

• 26 hosts negotiated ECN when ECT0 was set but not when CE was set

DSCP and ECN IP Codepoint Manipulation
without ECN negotiationn but ECT(0) (for 201,854 hosts)

• Side note: 3,252 hosts reflected ECT(0) in the SYN/ACK even though ECN
was not requested in the SYN

• Four of five paths see some DSCP manipulation
• Bleaching most common (incl. 3-bit ToS IP Precedence bits)

DSCP and ECN IP Codepoint Manipulation
without ECN negotiation but with ECT(1) (for 201,854 hosts)

• The majority of ECN-manipulating paths also bleach the DSCP codepoint
• ECN codepoint is set to 0 while the DSCP codepoint is set to a CS value

• indicates treatment according to the old ToS definition :-(

• For 2,775 (1.37%) hosts, the ECT0 codepoint was erased before received at server

• about 50% of the codepoint removal in the last hop

• more than 90% of the cases in the last 40% of the path

Summary
• Measure Internet Path Transparency to detect and quantify network

impairments as input for protocol design

• PATHspider - A framework for testing Path Transparency

• PTO - A centralized storage and analysis architecture

• Example ECN: Majority of on-path interference with the ECN IP
codepoint is linked to older interpretation of the ToS byte

• While ToS bleaching was observed on the whole network path (border routers), active ECN

IP rewriting is more commonly performed at edge networks (based on additional
traceroute measurements)

A few simple principles go a long way.
• Using common measurement frameworks and pulling data together into a simple

schema with a small set of metrics/semantics makes comparability possible.

• Measurement metadata is important: it gives you a way to express what you did and
how in a way that you (and others!) can use later.

• There's a tradeoff between ad-hoc (ease of writing) and standard-structured (ease of

use) schemas here.

• The details of what exactly a tool does, how that tool was configured, and the

context in which a measurement was taken are important.

• Provenance is also important: knowing where every bit of data and analysis came from
allows repeatability

• Doing this all the way down to commit references / software repository release

number for measurement and analysis tools makes reproducibility easier.

Overview Part II

• Hands-on work with PATHspider

• Let’s start some measurements!

• Target Lists using Hellfire

• PATHspider Plugins

• Use of scapy for packet forging

• Observations and Analysis

Run a measurement!
• Go into the PATHspider git folder

• Start Vagrant

 $ vagrant up

 $ vagrant ssh

• Run a measurement

 $ sudo pspdr measure ecn < /vagrant/input/tma-tutorial.ndjson.<XX> > results.ndjson &

Note: Usually you need to specify n interface with -i however this is a special version for the tutorial (using a university VPN
tunnel in order to avoid problems with the local network)

PATHspider 2.0
• Webpage: https://pathspider.net

• GitHub: https://github.com/mami-project/pathspider/

• Documentation: https://pathspider.readthedocs.io/en/stable/

• PATHspider is packaged for Debian and packages are made available for
the testing and stable-backports distributions.

• To install PATHspider, run:

$ sudo apt install pathspider

https://pathspider.net
https://github.com/mami-project/pathspider/
https://pathspider.readthedocs.io/en/stable/

PATHspider 2.0
• Workers open the connection and send test

data for all target on target list

• Observer passively monitors all out-going
and in-coming packets

• Merger appends record information from
each worker to the passively observed flow
records

• Combiner analyses the results of all
connections attempts belonging to one test
and generates observations

Using PATHspider
$ pspdr

usage: pspdr [-h] [--verbose] COMMAND ...

PATHspider will spider the paths.

optional arguments:

 -h, --help show this help message and exit

 --verbose Enable verbose logging

Commands:

 filter Pre-process a target list
 measure Perform a PATHspider measurement

 metadata Create PTOv3 metadata files from results

 upload Uploads data to PTO Creates metadata if not provided

 observe Passively observe network traffic

 test Run the built in test suite

Spider safely!

Using PATHspider plugins to measure
$ pspdr measure --help

usage: pspdr measure [-h] [-i INTERFACE] [-w WORKERS] [--input INPUTFILE]
 [--csv-input] [--output OUTPUTFILE] [--output-flows]
 PLUGIN ...

optional arguments:
 -h, --help show this help message and exit
 -i INTERFACE, --interface INTERFACE
 The interface to use for the observer. (Default: tun0)
 -w WORKERS, --workers WORKERS
 Number of workers to use. (Default: 20)
 --input INPUTFILE A file containing a list of PATHspider jobs. Defaults
 to standard input.
 --csv-input Indicate CSV format.
 --output OUTPUTFILE The file to output results data to. Defaults to
 standard output.
 --output-flows Include flow results in output.

Plugins:
 The following plugins are available for use:

 tfo TCP Fast Open
 mss TCP Maximum Segment Size
 tcpopt TCP Options (Timestamp, Windows Scaling, SACK)
 ecn Explicit Congestion Notification
 evilbit Evil bit connectivity testing
 h2 HTTP/2
 dnsresolv Simple Input List DNS Resolver
 dscp Differentiated Services Codepoints
 udpzero UDP Zero Checksum

Spider safely!

Using PATHspider as Passive Observer
• Observer modules used to be part of plugins in PATHspider 1.0, but in 2.0 they

are independent and so can be reused across multiple plugins:

• BasicChain, DNSChain, DSCPChain, ECNChain, EvilChain, ICMPChain,
TCPChain, TFOChain

• These can also be used together, limiting each chain to just a single layer and
letting the combiner produce conditions

• Chains can produce information to be consumed by other chains later in the list

• These can be used independently of a PATHspider measurement, e.g.:
 $ sudo pspdr observe tcp ecn

 $ sudo pspdr observe --list-chains

Target Lists using Hellfire
• Hellfire is a parallelised DNS resolver to generate input lists for PATHspider

• But can also be use be used other applications!

• Written in Go and available on GitHub: https://github.com/mami-project/hellfire

• Various input sources supported:

• Alexa Top 1 Million Global Sites

• Cisco Umbrella 1 Million

• Citizen Lab Test Lists

• OpenDNS Public Domain Lists

• Comma-Seperated Values Files

• Plain Text Domain Lists

•

https://github.com/mami-project/hellfire

Hellfire Usage
$ hellfire

Usage :

 hellfire −−topsites [−−file=<filename>] [−−output=<individual|array|oneeach>] [−−type=<  
 host | ns |mx>] [−−canid=<canid address >]

 hellfire −−cisco [−−file=<filename>] [−−output=<individual|array|oneeach>] [−−type=<  
 host | ns |mx>] [−−canid=<canid address >]

 hellfire −−citizenlab [−−country=<cc>|−−file=<filename>] [−−output=<individual|array|  
 oneeach >] [−−type=<host | ns |mx>] [−−canid=<canid address >]

 hellfire −−opendns [−−list=<name>|−−file=<filename>] [−−output=<individual|array|  
 oneeach >] [−−type=<host | ns |mx>] [−−canid=<canid address >]

 hellfire −−csv −−file=<filename> [−−output=<individual|array|oneeach>] [−−type=<host|ns

 |mx>] [−−canid=<canid address >]

 hellfire −−txt −−file=<filename> [−−output=<individual|array|oneeach>] [−−type=<host|ns

 |mx>] [−−canid=<canid address >]

$ hellfire −−cisco

PATHspider Plugins
• Synchronised (traditional ecnspider)

• ECN, DSCP

• Desynchronised (traditional ecnspider, no configurator)

• TFO, H2, TLS NPN/ALPN

• Forge (new in PATHspider 2.0.0)

• Evil Bit, UDP Zero Checksum, UDP Options

• Single (new in PATHspider 2.0.0 and fast)

• Various TCP Options

Synchronized Plugin

• SynchronizedSpider plugins use built-in connection 
methods along with global system configuration  
to change the behaviour of the connections

• One function should be written for each configuration

• Configuration functions may make calls to sysctl or iptables to
make global changes to the way that traffic is generated

• PATHspider will ensure that the configurations are set before the
corresponding traffic is generated

• However, plugin authors must ensure that any configuration is reset by
the next configuration function if that is required!

Example ECN Plugin

Desynchronized Plugin

• For DesynchronizedSpider plugins, there is no global state synchronisation.

• One function should be written for each connection to be made:

• Connection functions will modify the connection logic directly

• Connection helper (or custom connection logic) should be used to
generate traffic to target and to get a reply from the target

• Usually at least two functions need to be provided - a baseline followed
by an experimental connection.

• DesynchronizedSpider can be more efficient than a SynchronizedSpider!

•

Connection Helpers
• Instead of writing client code, use the code that already exists In the
pathspider.helpers module:

• DNS (dnslib)

• HTTP/HTTPS (pycURL)

• TCP (Python socket)

• For synchronised plugins, just use the helper

• For desycnhronised plugins, the helpers are customisable, e.g. cURL
helpers accept arbitrary CURLOPTs

Example H2 plugin

Single Plugin
• SingleSpider uses the built-in connection helpers to make a single

connection to the target (which is observed by Observer chains)

• Plugin only requires a combine_flows() function to generate conditions:

Forge Plugin
• ForgeSpider plugins use Scapy to send forged packets to targets

• The heart of a ForgeSpider is the forge() function

• takes two arguments: the job containing the target information and  
the sequence number

• This function will be called the number of times set in the packets metadata
variable and seq will be set to the number of times the function has been
called for this job

• PATHspider uses the Scapy library for Python for packet forging

• This is the most flexible method of creating new measurement plugins for
PATHspider!

Scapy: a toolkit for building anything else you
might need

• Packet manipulation tool to create or decode packets layer by layer,
header by header, byte by byte.

• While you can specify raw bytes, Scapy provides a number of useful
classes for common protocols, which makes things a lot easier

• Solidly in "hack up a quick little script" territory →  
be careful with metadata/provenance for these tools

• Scapy must be launched with sudo as we will need to use “raw” sockets to
emit forged packets:
$ sudo scapy
 >>>

Make a packet: IPv4 header - create and dissect

Make a packet: IPv4 header - customize

Make a packet: TCP header - create and dissect

Make a packet: TCP header - customise

Make a packet: Sticking the Pieces Together

Send a packet

Writing a Plugin: The Evil Bit
• To get started you will need the required directory layout for PATHspider plugins, in this case for the

EvilBit plugin:

+-- pathspider
 +-- __init__.py
 +-- plugins
 +-- __init__.py
 +-- evilbit.py

• Inside both _init_.py files, you will need to add the following (and only the following):

2

from pkgutil import extend path  
path = extend path(path , name)

• Your plugin will be written in evilbit.py and will be discovered automatically when you run PATHspider

• Use scapy’s i.flags = ’evil’ to forge packet with evil bit set

• Use self.source[0] for system IPv4 address and self.source[1] for Ipv6 address

• Use job[‘dip'] for destination IP address and job[‘dp'] for destination port

Analysis
• E.g. use Jupyter Notebooks

• Then open browser and go to

 http://localhost:8888/notebooks/analysis.ipynb

$ cd /vagrant/
$ cp /home/results.ndjson .
$ jupyter notebook —ip 0.0.0.0

Summary
• PATHspider 2.0 - A generalized framework for A/B testing

• Webpage: https://pathspider.net

• GitHub: https://github.com/mami-project/pathspider/

• Documentation: https://pathspider.readthedocs.io/en/stable/

• PATHspider Plugins

• Synchronised: e.g. ECN, DSCP

• Desynchronised (no configurator), e.g. TFO, H2, TLS NPN/ALPN

• Forge (new in PATHspider 2.0.0): e.g. Evil Bit, UDP Zero Checksum, UDP Options

• Single (new in PATHspider 2.0.0 and fast): e.g. various TCP Options using Scapy

• Spider safely!

https://pathspider.net
https://github.com/mami-project/pathspider/
https://pathspider.readthedocs.io/en/stable/

