

Decoupling TCP from IP with Multipath TCP

Olivier Bonaventure http://inl.info.ucl.ac.be http://perso.uclouvain.be/olivier.bonaventure

Thanks to Sébastien Barré, Christoph Paasch, Grégory Detal, Mark Handley, Costin Raiciu, Alan Ford, Micchio Honda, Fabien Duchene and many others

Agenda

The motivations for Multipath TCP

- The changing Internet
- The Multipath TCP Protocol
- Multipath TCP use cases

The origins of TCP

Source : http://spectrum.ieee.org/computing/software/the-strange-birth-and-long-life-of-unix

The Unix pipe model

The TCP bytestream model

Endhosts have evolved

Mobile devices have multiple wireless interfaces

User expectations

What technology provides

What technology provides

What technology provides

When IP addresses change TCP connections have to be re-established !

Equal Cost Multipath

Packet arrival :

Hash(IP_{src}, IP_{dst}, Prot, Port_{src}, Port_{dst}) mod #oif

Packets from one TCP connection follow same path

Different connections follow different paths

G. Detal, Ch. Paasch, S. van der Linden, P. Mérindol, G. Avoine, O. Bonaventure, *Revisiting Flow-Based Log Balancing: Stateless Path Selection in Data Center Networks*, Computer Networks, April 2013

How prevalent is ECMP ?

Analysis of ISP network topologies

Datacenters

ECMP in datacenters

G. Detal, Ch. Paasch, S. van der Linden, P. Mérindol, G. Avoine, O. Bonaventure, *Revisiting Flow-Based Load Balancing: Stateless Path Selection in Data Center Networks*, Computer Networks, April 2013

Agenda

• The motivations for Multipath TCP

The changing Internet

- The Multipath TCP Protocol
- Multipath TCP use cases

The Internet architecture that we explain to our students

O. Bonaventure, Computer networking : Principles, Protocols and Practice, open ebook, http://inl.info.ucl.ac.

A typical "academic" network

The end-to-end principle

In reality

Figure 1: Box plot of middlebox deployments for small (fewer than 1k hosts), medium (1k-10k hosts), large (10k-100k hosts), and very large (more than 100k hosts) enterprise networks. Y-axis is in log scale.

– almost as many middleboxes as routers
– various types of middleboxes are deployed

Sherry, Justine, et al. "*Making middleboxes someone else's problem: Network processing as a cloud service*. Proceedings of the ACM SIGCOMM 2012 conference. ACM, 2012.

A middlebox zoo

SSL

Terminator

Web Security Appliance

VPN Concentrator

NAC Appliance

ACE XML Gateway

PIX Firewall Right and Left

Cisco IOS Firewall

IP Telephony Router

Streamer

Voice Gateway

Content Engine

http://www.cisco.com/web/about/ac50/ac47/2.html

How to model those middleboxes ?

- In the official architecture, they do not exist
- In reality...

TCP segments processed by a router

1	Ver IHL ToS			Total length]	Ver	IHL	ToS	Τα	otal length	
	Identification			Flags Frag. Offset			Identific		ation	Flags	Frag. Offset	
IP	TTL Protocol		Checksum			TTL		Protocol	Checksum			
		S	Source IP	addres	S		Source IP address					
↓ ↓	Destination IP address					(Sp)	Destination IP address					
Î	S	Source	port	Destination port		Bouter 1	Source port			Destination port		
	Sequence number					i louter 1	Sequence number					
	Acknowledgment number					\longrightarrow	Acknowledgment number					
TCP	THL	THL Reserved Flags		s W	indow		THL Reserved Fla			s Window		
	Checksum			Urgent pointer			Checksum			Urgent pointer		
	Options						Options					
			Pa	ayload					Pa	yload		

TCP segments processed by a NAT

Ver	IHL	-	ΓoS	Total length							
l	dentific	atio	n	Flags	Frag. Offset						
٦	TL	Pro	otocol	Checksum							
	Source IP address										
	Destination IP address										
Source port Destination port											
Sequence number											
	Acknowledgment number										
THL	THL Reserved Flags Window										
C	Checks	um		Urgent pointer							
Options											
Payload											

Ver	er IHL ToS		Total length								
	dentific	atio	'n	Flags	Frag. Offset						
-	TTL	Pro	otocol	Checksum							
	Source IP address										
	Destination IP address										
S	Source port Destination port										
	Sequence number										
	A	ckno	owledg	jment r	number						
THL	THL Reserved Flags Window										
(Checksum Urgent pointer										
			Opti	ons							
	Payload										

TCP segments processed by a NAT (2)

active mode ftp behind a NAT

220 ProFTPD 1.3.3d Server (BELNET FTPD Server) [193.190.67.15] ftp_login: user `<null>' pass `<null>' host `ftp.belnet.be'

Name (ftp.belnet.be:obo): anonymous

---> USER anonymous

331 Anonymous login ok, send your complete email address as your password Password:

---> PASS XXXX

```
---> PORT 192,168,0,7,195,120
```

200 PORT command successful

---> LIST

150 Opening ASCII mode data connection for file list

Irw-r--r-- 1 ftp ftp 6 Jun 1 2011 pub -> mirror

226 Transfer complete

TCP segments processed by an ALG running on a NAT

Ver	IHL	-	ΓoS	Total length						
	dentific	atio	n	Flags	Frag. Offset					
٦	TL	Pro	otocol	Checksum						
	Source IP address									
	Destination IP address									
S	Source port Destination port									
Sequence number										
	Acknowledgment number									
THL	THL Reserved Flags Window									
0	Checks	um		Urgent pointer						
	Options									
Payload										

Ver	Ver IHL ToS To		otal length							
	dentific	atio	'n	Flags	Frag. Offset					
•	TTL	Pro	otocol	Checksum						
Source IP address										
Destination IP address										
S	Source port Destination port									
	Sequence number									
	Α	ckn	owled	lgmen	t number					
THL	Reser	ved	Flags	Window						
	Checks	sum		Urgent pointer						
	Options									
	Payload									

How transparent is the Internet ?

- 25th September 2010 to 30th April 2011
- 142 access networks
- 24 countries
- Sent specific TCP segments from client to a server in Japan

Table 2: Experiment Venues

Country	Home	Hotspot	Cellular	Univ	Ent	Hosting	Total
Australia	0	2	0	0	0	1	3
Austria	0	0	0	0	1	0	1
Belgium	4	0	0	1	0	0	5
Canada	1	0	1	0	1	0	- 3
Chile	0	0	0	0	1	0	1
China	0	7	0	0	0	0	7
Czech	0	2	0	0	0	0	2
Denmark	0	2	0	0	0	0	2
Finland	1	0	0	- 3	2	0	6
Germany	- 3	1	3	4	1	0	12
Greece	2	0	1	0	0	0	3
Indonesia	0	0	0	3	0	0	- 3
Ireland	0	0	0	0	0	1	1
Italy	1	0	0	0	1	0	2
Japan	19	10	7	3	2	0	41
Romania	1	0	0	0	0	0	1
Russia	0	1	0	0	0	0	1
Spain	0	1	0	1	0	0	2
Sweden	1	0	0	0	0	0	1
Switzerland	2	0	0	0	0	0	2
Thailand	0	0	0	0	2	0	2
U.K.	10	4	4	2	1	1	22
U.S.	- 3	4	4	0	4	2	17
Vietnam	1	0	0	0	1	0	2
Total	49	34	20	17	17	5	142

How to extend TCP ? RFC1323

- Large window extension
 - supports >64KBytes windows by shifting window field in TCP segment header

How to extend TCP ? RFC1323

• What happens with middleboxes ?

How to extend TCP ? RFC1323

• What happens with middleboxes ?

End-to-end transparency today

Agenda

- The motivations for Multipath TCP
- The changing Internet
- The Multipath TCP Protocol
 - Multipath TCP use cases

Design objectives

- Multipath TCP is an *evolution* of TCP
- Design objectives
 - Support unmodified applications
 - Work over today's networks (IPv4 and IPv6)
 - Works in all networks where regular TCP works

TCP Connection establishment

• Three-way handshake

Connection release

Connection release

Identification of a TCP connection

Four tuple

- $-IP_{\text{source}}$
- $-\mathrm{IP}_{\mathrm{dest}}$
- Port_{source}
- Port_{dest}

All TCP segments contain the four tuple

The *new* bytestream model

The Multipath TCP protocol

Control plane

- How to manage a Multipath TCP connection that uses several paths ?
- Data plane
 - How to transport data ?
- Congestion control
 - How to control congestion over multiple paths ?

Design decision

- A Multipath TCP connection is composed of one or more regular TCP subflows that are combined
 - Each host maintains state that glues the TCP subflows that compose a Multipath TCP connection together
 - Each TCP subflow is sent over a single path and appears like a regular TCP connection along this path

Multipath TCP and the architecture

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, "Architectural guidelines for multipath TCP development", RFC6182 2011.

A regular TCP connection

• What is a *regular* TCP connection ?

- It starts with a three-way handshake
 - SYN segments may contain special options
- All data segments are sent in sequence
 - There is no gap in the sequence numbers
- It is terminated by using FIN or RST

How to combine two TCP subflows ?

How to link TCP subflows ?

SYN, Port_{src}=1235,Port_{dst}=80 +Option[link Port_{src}=**1234**,Port_{dst}=**80**]

How to link TCP subflows ?

SYN, Port_{src}=1235,Port_{dst}=80 +Option[Token=**6543**]

TCP subflows

- Which subflows can be associated to a Multipath TCP connection ?
 - At least one of the elements of the four-tuple needs to differ between two subflows
 - Local IP address
 - Remote IP address
 - Local port
 - Remote port

Subflow agility

- Multipath TCP supports
 - addition of subflows
 - removal of subflows

The Multipath TCP protocol

- Control plane
 - How to manage a Multipath TCP connection that uses several paths ?

🛑 Data plane

– How to transport data ?

- Congestion control
 - How to control congestion over multiple paths ?

How to transfer data ?

Multipath TCP Data transfer

• Two levels of sequence numbers

Multipath TCP How to deal with losses ?

- Data losses over one TCP subflow
 - Fast retransmit and timeout as in regular TCP

Multipath TCP

• What happens when a TCP subflow fails ?

Retransmission heuristics

- Heuristics used by current Linux implementation
 - Fast retransmit is performed on the same subflow as the original transmission
 - Upon timeout expiration, reevaluate whether the segment could be retransmitted over another subflow
 - Upon loss of a subflow, all the unacknowledged data are retransmitted on other subflows

Flow control

 How should the window-based flow control be performed ?

Independant windows on each TCP subflow

A single window that is shared among all TCP subflows

Independant windows possible problem

 Impossible to retransmit, window is already full on green subflow

A single window shared by all subflows

Dseq=0,seq=123,"a"

A single window shared by all subflows Impact of middleboxes

Dseq=0,seq=123,"a"

Multipath TCP Windows

- Multipath TCP maintains one window per Multipath TCP connection
 - Window is relative to the last acked data (Data Ack)
 - Window is shared among all subflows
 - It's up to the implementation to decide how the window is shared
 - Window is transmitted inside the window field of the regular TCP header
 - If middleboxes change window field,
 - use largest window received at MPTCP-level
 - use received window over each subflow to cope with the flow control imposed by the middlebox

Multipath TCP buffers

Sending Multipath TCP information

- How to exchange the Multipath TCP specific information between two hosts ?
- Option 1
 - Use TLVs to encode data and control information inside payload of subflows
- Option 2
 - Use TCP options to encode all Multipath TCP information

Option 1 : Michael Scharf, Thomas-Rolf Banniza , MCTCP: A Multipath Transport Shim Layer, GLOBECOM

Multipath TCP with only options

- Advantages
 - Normal way of extending TCP
 - Should be able to go
 through middleboxes or
 fallback

- Drawbacks
 - limited size of the TCP options, notably inside SYN
 - What happens when middleboxes drop TCP options in data segments

Multipath TCP using TLV

- Advantages
 - Multipath TCP could start as regular TCP and move to Multipath only when needed
 - Could be implemented as a library in userspace
 - TLVs can be easily extended

- Drawbacks
 - TCP segments contain
 TLVs including the data
 and not only the data
 - problem for middleboxes, DPI, ..
 - Middleboxes become more difficult

Is it safe to use TCP options ?

• Known option (TS) in Data segments

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM, 2011.

© O. Bonaventure, 2011

Is it safe to use TCP options ?

• Unknown option in Data segments

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM, 2011.

© O. Bonaventuro, 2011

Multipath TCP options

• TCP option format

|--|

- Initial design
 - One option kind for each purpose (e.g. Data Sequence number)
- Final design

A single variable-length Multipath TCP option

Multipath TCP option

• A single option type

 to minimise the risk of having one option accepted by middleboxes in SYN segments and rejected in segments carrying data

Kind	Length	Subtype	_
(Subtype sp	pecific data	-
(variable le	ength)	

Data sequence numbers and TCP segments

- How to transport Data sequence numbers ?
 - Same solution as for TCP
 - Data sequence number in TCP option is the Data sequence number of the first byte of the segment

Source port			Destination port
Sequence number			
Acknowledgment number			
THL	Reserved	Flags	Window
Checksum			Urgent pointer
Datasequence number			
Payload			

Which middleboxes change TCP sequence numbers ?

- Some firewalls change TCP sequence numbers in SYN segments to ensure randomness
 - fix for old windows95 bug
- Transparent proxies terminate TCP connections

Middlebox interference

Such a middlebox could also be the network adapter of the server that uses LRO to improve performance.

Segment coalescing

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM, 2011.

A "middlebox" that both splits and coalesces TCP segments

- How to avoid desynchronisation between the bytestream and data sequence numbers ?
- Solution
 - Multipath TCP option carries mapping between
 Data sequence numbers and (difference between initial and current) subflow sequence numbers
 - mapping covers a part of the bytestream (length)

Multipath TCP and middleboxes

- With the DSS mapping, Multipath TCP can cope with middleboxes that
 - combine segments
 - split segments
- Are they the most annoying middleboxes for Multipath TCP ?

– Unfortunately not

TCP sequence number and middleboxes

SIGCOMM conference on Internet measurement conference. ACM, 2011.

© O. Bonaventure, 2011

The worst middlebox

Is this an academic exercise or reality ?

The worst middlebox

• Is unfortunately very old...

– Any ALG for a NAT

220 ProFTPD 1.3.3d Server (BELNET FTPD Server) [193.190.67.15]

ftp_login: user `<null>' pass `<null>' host `ftp.belnet.be'

Name (ftp.belnet.be:obo): anonymous

---> USER anonymous

331 Anonymous login ok, send your complete email address as your password Password:

---> PASS XXXX

---> PORT 192,168,0,7,195,120

200 PORT command successful

---> LIST

150 Opening ASCII mode data connection for file list
lrw-r--r-- 1 ftp ftp 6 Jun 1 2011 pub -> mirror
226 Transfer complete

Coping with the worst middlebox

- What should Multipath TCP do in the presence of such a worst middlebox ?
 - Do nothing and ignore the middlebox
 - but then the bytestream and the application would be broken and this problem will be difficult to debug by network administrators

- Detect the presence of the middlebox
 - and fallback to regular TCP (i.e. use a single path and nothing fancy)

Multipath TCP **MUST** work in all networks where regular TCP works.

Detecting the worst middlebox ?

- How can Multipath TCP detect a middlebox that modifies the bytestream and inserts/ removes bytes ?
 - Various solutions were explored
 - In the end, Multipath TCP chose to include its own checksum to detect insertion/deletion of bytes

The worst middlebox

Multipath TCP Data sequence numbers

• What should be the length of the data sequence numbers ?

– 32 bits

- compact and compatible with TCP
- wrap around problem at highspeed requires PAWS
- 64 bits
 - wrap around is not an issue for most transfers today
 - takes more space inside each segment

Multipath TCP Data sequence numbers

- Data sequence numbers and Data acknowledgements
 - Maintained inside implementation as 64 bits field
 - Implementations can, as an optimisation, only transmit the lower 32 bits of the data sequence and acknowledgements

Cost of the DSN checksum

C. Raiciu, et al. "How hard can it be? designing and implementing a deployable multipath TCP," NSDI'12: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

The Multipath TCP protocol

- Control plane
 - How to manage a Multipath TCP connection that uses several paths ?
- Data plane
 - How to transport data ?

Congestion control

– How to control congestion over multiple paths ?

TCP congestion control

- A linear rate adaption algorithm
 - rate(t + 1) = α_C + β_Crate(t) when the network is congested
 - $rate(t + 1) = \alpha_N + \beta_N rate(t)$ when the network is *not* congested

To be fair and efficient, a linear algorithm must use additive increase and multiplicative decrease (AIMD)

AIMD in TCP

- Congestion control mechanism
 - Each host maintains a congestion window (cwnd)
 - No congestion
 - Congestion avoidance (additive increase)
 - increase cwnd by one segment every round-trip-time
 - Congestion
 - TCP detects congestion by detecting losses
 - Mild congestion (fast retransmit multiplicative decrease)
 cwnd=cwnd/2 and restart congestion avoidance
 - Severe congestion (timeout)
 - *cwnd*=1, set slow-start-threshold and restart slow-start

Evolution of the congestion window

Congestion control for Multipath TCP

- Simple approach
 - independant congestion windows

Independant congestion windows

• Problem

Coupled congestion control

- Congestion windows are coupled
 - congestion window growth cannot be faster than TCP with a single flow
 - Coupled congestion control aims at moving traffic away from congested path

Coupling the congestion windows

- Principle
 - The TCP subflows are not independent and their congestion windows must be coupled
- EWTCP
 - For each ACK on path r, cwin_r=cwin_r+a/cwin_r (in segments)
 - For each loss on path r, $cwin_r = cwin_r/2$
 - Each subflow gets window size proportional to a²
 - Same throughput as TCP if $a = \frac{1}{\sqrt{n}}$

M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda. Multipath Congestion Control for Shared Bottleneck. In *Proc. PFLDNeT workshop*, May 2009.

Can we split traffic equally among all subflows ?

In this scenario, EWTCP would get 3.5 Mbps on the two hops path and 5 Mbps on the one hop path, less than the optimum of 12 Mbps for each Multipath TCP connection

D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, "Design, implementation and evaluation of congestion control for multipath TCP," NSDI'11: Proceedings of the 8th USENIX conference on Networked systems design and implementation, 2011.

Linked increases congestion control

- Algorithm
 - For each loss on path r, $cwin_r = cwin_r/2$

Additive increase

$$cwin_{r} = cwin_{r} + \min(\frac{cwnd_{i}}{(rtt_{i})^{2}}) + \frac{1}{(\sum_{i} \frac{cwnd_{i}}{rtt_{i}})^{2}}, \frac{1}{cwnd_{r}})$$

D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, "Design, implementation and evaluation of congestion control for multipath TCP," NSDI'11: Proceedings of the 8th USENIX conference on Networked systems design and implementation, 2011.

Other Multipath-aware congestion control schemes

R. Khalili, N. Gast, M. Popovic, U. Upadhyay, J.-Y. Le Boudec, MPTCP is not Pareto-optimal: Performance issues and a possible solution, Proc. ACM Conext 2012

Y. Cao, X. Mingwei, and X. Fu, "Delay-based Congestion Control for Multipath TCP," ICNP2012, 2012.

T. A. Le, C. S. Hong, and E.-N. Huh, "Coordinated TCP Westwood congestion control for multiple paths over wireless networks," ICOIN '12: Proceedings of the The International Conference on Information Network 2012, 2012, pp. 92–96.

T. A. Le, H. Rim, and C. S. Hong, "A Multipath Cubic TCP Congestion Control with Multipath Fast Recovery over High Bandwidth-Delay Product Networks," *IEICE Transactions*, 2012.

T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, "Applying TCP-Friendly Congestion Control to Concurrent Multipath Transfer," Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on, 2010, pp. 312–319.

The Multipath TCP protocol

Control plane

- How to manage a Multipath TCP connection that uses several paths ?
- Data plane
 - How to transport data ?
- Congestion control
 - How to control congestion over multiple paths ?

The Multipath TCP control plane

Connection establishment

• Closing a Multipath TCP connection

• Address dynamics
The Multipath TCP control plane

- Connection establishment
 - Beware of middleboxes that remove TCP options
 - Limited space inside TCP option in SYN
- Closing a Multipath TCP connection
 - Decouple closing the Multipath TCP connection from closing the subflows
- Address dynamics

Security threats

- Three main security threats were considered – flooding attack
 - man-in-the middle attack
 - hijacking attach
 Security goal :
 Multipath TCP should not be worse than regular TCP

J. Diez, M. Bagnulo, F. Valera, and I. Vidal, "Security for multipath TCP: a constructive approach," International Journal of Internet Protocol Technology, vol. 6, 2011.

Hijacking attack

Multipath TCP Connection establishment

• Principle

Roles of the initial TCP handshake

- Check willingness to open TCP connection
 - Propose initial sequence number
 - Negotiate Maximum Segment Size
- TCP options
 - negotiate Timestamps, SACK, Window scale
- Multipath TCP
 - check that server supports Multipath TCP
 - propose Token in each direction
 - propose initial Data sequence number in each direction
 - Exchange keys to authenticate subflows

How to extend TCP ? Theory

TCP options were invented for this purpose
 – Exemple SACK

How to extend TCP ? practice

• What happens when there are middleboxes on the path ?

TCP options

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM, 2011.

© O. Bonaventure, 2011

How to extend TCP ? The worst case

• What happens when there are middleboxes on the path ?

Multipath TCP option in third ACK

Initial Data Sequence number

- Why do we need an initial Data Sequence number ?
 - Setting IDSN to a random value improves security
 - Hosts must know IDSN to prevent data injection attacks

Initial Data Sequence number

Initial Data Sequence number

How to negotiate the IDSN ?

How to secure Multipath TCP

• Main goal

Authenticate the establishment of subflows

- Principles
 - Each host announces a key during initial handshake
 - keys are exchanged in clear
 - When establishing a subflow, use HMAC + key to authenticate subflow

Putting everything inside the SYN

- How can we place inside SYN segment ?
 - Initial Data Sequence Number (64 bits)
 - Token (32 bits)
 - Authentication Key (the longer the better)

Constraint on TCP options

Ver	IHL	٦	ΓoS	Total length	
Identification				Flags	Frag. Offset
TTL		Pro	otocol	Cł	necksum
Source IP address					
Destination IP address					
Source port				Destination port	
Sequence number					
Acknowledgment number					
THL	Reser	ved	Flags	Window	
Checksum				Urgent pointer	
Options					
Payload					

- Total length of TCP header : max 64 bytes
 - max 40 bytes for TCP options
 - *Options* length must be multiple of 4 bytes

TCP options in the wild

- MSS option [4 bytes]
 - Used only inside SYN segments
- **Timestamp** option [10 bytes] — Used in potentially all segments
- Window scale option [3 bytes] – Used only inside SYN segments
- **SACK permitted** option [2 bytes] — Used only inside SYN segments
- Selective Acknowledgements [N bytes]
 - Used in data segments

Only 20 bytes left inside SYN !

http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xml

The MP_CAPABLE option

Initial Data Sequence Numbers and Tokens

• Computation of initial Data Sequence Number

IDSN_A=Lower₆₄(SHA-1(Key_A))

IDSN_B=Lower₆₄(SHA-1(Key_B))

Computation of token

Token_A=Upper₃₂(SHA-1(Key_A))

Token_B=Upper₃₂(SHA-1(Key_B))

There is a small risk of collision, different keys same token

Cost of the Multipath TCP handshake

C. Raiciu, et al. "How hard can it be? designing and implementing a deployable multipath TCP," NSDI'12: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

The Multipath TCP control plane

• Connection establishment in details

• Closing a Multipath TCP connection

• Address dynamics

Closing a Multipath TCP connection

- How to close a Multipath TCP connection ?
 - By closing all subflows ?

Closing a Multipath TCP connection

seq=<mark>123</mark>, DSS[<mark>1</mark>-><mark>123</mark> ...], "ab"

Closing a Multipath TCP connection

FAST Close

The Multipath TCP control plane

• Connection establishment in details

• Closing a Multipath TCP connection

• Address dynamics

Multipath TCP Address dynamics

• How to learn the addresses of a host ?

• How to deal with address changes ?

Address dynamics

Basic solution : multihomed server

Address dynamics

• Basic solution : mobile client

Address dynamics with NATs

- Solution
 - Each address has one identifier
 - Subflow is established between id=0 addresses
 - Each host maintains a list of <address,id> pairs of the addresses associated to an MPTCP endpoint
 - MPTCP options refer to the address identifier
 - ADD_ADDR contains <address,id>
 - REMOVE_ADDR contains <id>

Agenda

- The motivations for Multipath TCP
- The changing Internet
- The Multipath TCP Protocol
- Multipath TCP use cases
 - Datacenters
 - Smartphones
 - Commercial deployments

TCP on servers

• How to increase server bandwidth ?

- Load balancing techniques
 - packet per packet
 - per flow load balancing
 - each TCP connection is mapped onto one interface
Increasing server bandwidth with Multipath TCP

- Load balancing with Multipath TCP
 - Congestion control efficiently uses the two links for each MPTCP connection
 - Automatic failover in case of failures

How fast can Multipath TCP go ?

http://linux.slashdot.org/story/13/03/23/0054252/a-50-gbps-connection-with-multipath-tcp

How fast can Multipath TCP go ?

Datacenters evolve

- Traditional Topologies are treebased
 - Poor performance
 - Not fault tolerant
- Shift towards multipath topologies: FatTree, BCube,VL2, Cisco, EC2

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

Fat Tree Topology [Fares et al., 2008; Clos, 1953]

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

TCP in data centers

TCP in FAT tree networks Cost of collissions

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

How to get rid of these collisions ?

 Consider TCP performance as an optimisation problem

The Multipath TCP way

MPTCP better utilizes the FatTree network

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

See also G. Detal, et al., *Revisiting Flow-Based Load Balancing: Stateless Path Selection in Data Center Networks*, Computer Networks, April 2013 for extensions to ECMP for MPTCP

How many subflows does Multipath TCP need ?

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

Can we improve Multipath TCP ?

• Two subflows may follow similar paths

Improving ECMP

G. Detal, Ch. Paasch, S. van der Linden, P. Mérindol, G. Avoine, O. Bonaventure, *Revisiting Flow-Based Load Balancing: Stateless Path Selection in Data Center Networks*, to appear in Computer Networks

Multipath TCP with CFLB in Fat-Tree

G. Detal, Ch. Paasch, S. van der Linden, P. Mérindol, G. Avoine, O. Bonaventure, *Revisiting Flow-Based Load Balancing: Stateless Path Selection in Data Center Networks*, to appear in Computer Networks

Multipath TCP on EC2

- Amazon EC2: infrastructure as a service
 - We can borrow virtual machines by the hour
 - These run in Amazon data centers worldwide
 - We can boot our own kernel
- A few availability zones have multipath topologies
 - 2-8 paths available between hosts not on the same machine or in the same rack
 - Available via ECMP

Amazon EC2 Experiment

- 40 medium CPU instances running MPTCP
- During 12 hours, we sequentially ran all-to-all iperf cycling through:

- TCP

– MPTCP (2 and 4 subflows)

MPTCP improves performance on EC2

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

Agenda

- The motivations for Multipath TCP
- The changing Internet
- The Multipath TCP Protocol
- Multipath TCP use cases
 - Datacenters
- Smartphones
 - Commercial deployments

Motivation

• One device, many IP-enabled interfaces

ssh with Multipath TCP

<pre>istoph@cpaasch-mac:~\$ ls Documents mptcp_6.jpeg mptcp_info mptcp_up ktop Downloads mptcp_down mptcp_orig.jpeg Multimedia istoph@cpaasch-mac:~\$ rc^C istoph@cpaasch-mac:~\$ rC istoph@cpaasch-mac:~\$ rC istoph@cpaasch-mac:~\$ rC istoph@cpaasch-mac:~\$ cd^C istoph@cpaasch-mac:~\$ cd^C istoph@cpaasch-mac:~\$ cd^C istoph@cpaasch-mac:~\$ cd istoph@cpaasch-mac:~\$ cd isto</pre>	NVIDIA-Linux-x86_64-285.05.09. run aut.agv	Programming V Ubuntu One w	VirtualBo √allpaper	x VHs	workspace	JCL Iniversité atholique e Louvain	ALL DOWNSTRANCE AND ALL DOWNSTRANCE	ictea	3
<pre>inter::begin: Paint device returned engine == 0, type: 2 inter::begin: Paint device returned engine == 0, type: 2 inter::begin: Paint device returned engine == 0, type: 2 inter::begin: Paint device returned engine == 0, type: 2 inter::begin: Paint device returned engine == 0, type: 2 inter::begin: Paint device returned engine == 0, type: 2 istoph@cpaasch-mac:-\$ ls Documents mptcp_6.jpeg mptcp_info mptcp_up ktop Downloads mptcp_6.jpeg mptcp_info mptcp_up istoph@cpaasch-mac:-\$ ls Documents mptcp_6.jpeg mptcp_info mptcp_up istoph@cpaasch-mac:-\$ recordmydesktop til recording window is set to: Yio Width:1366 Heinht:768 </pre>	NVIDIA-Linux-x86_64-285.05.09.run out.ogy hsdi-2012/demo/ NVIDIA-Linux-x86_64-285.05.09.run Programming	Programming Vi Ubuntu One wal Ubuntu One VirtualBox VHs	224 244 046 8 016 8 016 8 011 0 0 12 24 01 16	8 kbet/s 6 kbet/s 4 kbet/s 2 kbet/s 0 kbet/s 6 kbet/s 4 kbet/s 4 kbet/s	10 s Receiving Total Receiv	7 2.8 kbit/s ed 5.2 Gbit	Nomer-2- s Sending Total Sent	4 2.0 kbit/s 5.7 Gbit	2 Close
christoph bash	christ	oph : bash	8 8 0 922 8 8 0 9 8 0 9 0 9 0	2 kbit/s 0 kbit/s 6 kbit/s 6 kbit/s 2 kbit/s 0 kbit/s	10 S Receiving Total Receiv 10 S Receiving Total Receiv	ed 130.0 Mbit ed 130.0 Mbit 7 0.0 kbit/s ed 0.0 kbit	s Sending Total Sent s Sending Total Sent	4 0.0 kbit/s 42.1 Mbit 4 0.0 kbit/s 0.0 kbit/s	2 G 2 2 Clar
Traffic	Monitor 22						. mô	N 1 .	12.0

C. Raiciu, et al. "How hard can it be? designing and implementing a deployable multipath TCP," NSDI'12: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

C. Raiciu, et al. "How hard can it be? designing and implementing a deployable multipath TCP," NSDI'12: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

Understanding the performance issue

Reinject segment on fast path

Halve congestion window on slow subflow

Usage of 3G and WiFI

- How should Multipath TCP use 3G and WiFi ?
 - Full mode
 - Both wireless networks are used at the same time
 - Backup mode
 - Prefer WiFi when available, open subflows on 3G and use them as backup
 - Single path mode
 - Only one path is used at a time, WiFi preferred over 3G

Live streaming

Multipath TCP : Full mode

Multipath TCP : Backup mode

Multipath TCP : Backup mode

• What happens when link fails ?

Multipath TCP : single-path mode

• Multipath TCP supports break before make

Evaluation scenario

C. Paasch, et al., "Exploring mobile/WiFi handover with multipath TCP," presented at the CellNet '12: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012.

C. Paasch, et al., "Exploring mobile/WiFi handover with multipath TCP," presented at the CellNet '12: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012.

C. Paasch, et al., "Exploring mobile/WiFi handover with multipath TCP," presented at the CellNet '12: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012.

Agenda

- The motivations for Multipath TCP
- The changing Internet
- The Multipath TCP Protocol
- Multipath TCP use cases
 - Datacenters
 - Smartphones
- IPv4/IPv6 coexistence

IPv6 is coming ...

Display Users Data

Source http://6lab.cisco.com/stats/cible.php?country=world

But IPv4 and IPv6 perf. may differ

best performing protocol, as percentage-wise increase over the least performing protocol

E. Aben, Measuring World IPv6 Day - Comparing IPv4 and IPv6 Performance,

Frequency

https://labs.ripe.net/Members/emileaben/measuring-world-ipv6-day-comparing-ipv4-and-ipv6-performance

Happy eyeballs

IPv6:...:beef

How to get best of IPv4 and IPv6 ?

Agenda

- The motivations for Multipath TCP
- The changing Internet
- The Multipath TCP Protocol
- Multipath TCP use cases
 - Datacenters
 - Smartphones
 - Commercial deployments

Multipath TCP use cases The beast

VRT lanceert "The beast" voor videojournalisten

Multipath TCP use cases Low latency for Siri

Long-lived TLS connections

Through the Shazam app, Siri can tell you what song is playing around you.

Multipath TCP use cases High bandwidth on smartphones

• Koreans want 800+ Mbps on smartphones

Faster broadband networks ?

Stessares Multipath TCP use cases Hybrid Access Networks

Conclusion

- Multipath TCP is becoming a reality
 - Due to the middleboxes, the protocol is more complex than initially expected
 - RFC has been published
 - there is running code !
 - Multipath TCP works over today's Internet :
- What's next ?
 - More use cases
 - Measurements and improvements to the protocol
 - Time to revisit 20+ years of heuristics added to TCP

Try it by yourself ! http://multipath-tcp.org

icteam M	ultiPath TCP - Linux Kernel implemen Main :: Home Page	
रूस कि including You View Edit History Priv		
HomePage	Welcome to the Linux kernel MultiPath TCP pro	oject
Researchers	MultiPath TCP (MPTCP) is an effort towards enabling the simultaneous use of several IP-addresses/interfaces by a	Are you talking MPTCP ?
References	modification of TCP that presents a regular TCP interface to	No, you aren't!
Users/Testers	applications, while in fact spreading data across several subflows. Benefits of this include better resource utilization, better	You can remediate to this by installing MPTCP.
How to install MPTCP?	throughput and smoother reaction to failures. Slides - explaining MultiPath TCP - are available in odf and onty format You can	Breaking News
Configure Routing	also have a look at our Google Techtalk about MPTCP.	22. March 2013: The fastest TCP
Configure MPTCP	The IP Networking Lab is implementing MPTCP in the Linux	connection with Multipath TCP!!!
Handle Crashdumps	Kernel and hosting it on this website for users, testers and	send a data-stream at 51.8
Report a bug	developers.	Gbit/second.
Use MPTCP	For questions, feedback, please contact us at the mptcp-dev	13. March 2013: The stable release
	Mailing-List	MultiPath TCP v0.86 is available
HOUS	Stable Belezes	on our release page.
MPTCP measurements	Stable Release	11. March 2013: Networked
Developers	MultiPath TCP v0.86 is available on our release page.	Systems 2013 includes a MultiPath
How to contribute?		Bonaventure. You can find the clides
now to contribute?	The fastest TCP connection with Multipath TCP	in .pdf or .pptx format.
Submit a patch	Breaking the record of the fastest TCP connection - have a look	
QuickLinks	here how we can achieve 51.8 Gbit/second with Multipath TCP.	U9. January 2013: MultiPath TCP for the Android Nexus now available!
Git-repository		Checkout
		https://aithub.com/matca-

References

- The Multipath TCP protocol
 - http://www.multipath-tcp.org
 - http://tools.ietf.org/wg/mptcp/

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, "Architectural guidelines for multipath TCP development", RFC6182 2011.

A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure, "TCP Extensions for Multipath Operation with Multiple Addresses," RFC6824, 2013

C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and M. Handley, "How hard can it be? designing and implementing a deployable multipath TCP," NSDI'12: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

Implementations

• Linux

– http://www.multipath-tcp.org

S. Barre, C. Paasch, and O. Bonaventure, "Multipath tcp: From theory to practice," *NETWORKING 2011*, 2011.

Sébastien Barré. Implementation and assessment of Modern Hostbased Multipath Solutions. PhD thesis. UCL, 2011

- FreeBSD
 - http://caia.swin.edu.au/urp/newtcp/mptcp/
- Simulators
 - http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
 - http://code.google.com/p/mptcp-ns3/

Middleboxes

M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda, "Is it still possible to extend TCP?," IMC '11: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, 2011.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, "Design and implementation of a consolidated middlebox architecture," *USENIX NSDI*, 2012.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, "Making middleboxes someone else's problem: network processing as a cloud service," SIGCOMM '12: Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication, 2012.

Multipath congestion control

Background

D. Wischik, M. Handley, and M. B. Braun, "The resource pooling principle," ACM SIGCOMM Computer ..., vol. 38, no. 5, 2008.

F. Kelly and T. Voice. Stability of end-to-end algorithms for joint routing and rate control. ACM SIGCOMM CCR, 35, 2005.

P. Key, L. Massoulie, and P. D. Towsley, "Path Selection and Multipath Congestion Control," INFOCOM 2007. 2007, pp. 143–151.

Coupled congestion control

C. Raiciu, M. J. Handley, and D. Wischik, "Coupled Congestion Control for Multipath Transport Protocols," *RFC*, vol. 6356, Oct. 2011.

D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, "Design, implementation and evaluation of congestion control for multipath TCP," NSDI'11: Proceedings of the 8th USENIX conference on Networked systems design and implementation, 2011.

Multipath congestion control

– More

R. Khalili, N. Gast, M. Popovic, U. Upadhyay, J.-Y. Le Boudec , MPTCP is not Pareto-optimal: Performance issues and a possible solution, Proc. ACM Conext 2012

Y. Cao, X. Mingwei, and X. Fu, "Delay-based Congestion Control for Multipath TCP," ICNP2012, 2012.

T. A. Le, C. S. Hong, and E.-N. Huh, "Coordinated TCP Westwood congestion control for multiple paths over wireless networks," ICOIN '12: Proceedings of the The International Conference on Information Network 2012, 2012, pp. 92–96.

T. A. Le, H. Rim, and C. S. Hong, "A Multipath Cubic TCP Congestion Control with Multipath Fast Recovery over High Bandwidth-Delay Product Networks," *IEICE Transactions*, 2012.

T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, "Applying TCP-Friendly Congestion Control to Concurrent Multipath Transfer," Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on, 2010, pp. 312–319.

Use cases

Datacenter

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. J. Handley, "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

G. Detal, Ch. Paasch, S. van der Linden, P. Mérindol, G. Avoine, O. Bonaventure, *Revisiting Flow-Based Load Balancing: Stateless Path Selection in Data Center Networks*, Computer Networks, April 2013

– Mobile

C. Pluntke, L. Eggert, and N. Kiukkonen, "Saving mobile device energy with multipath TCP," *MobiArch '11: Proceedings of the sixth international workshop on MobiArch*, 2011.

C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, "Exploring mobile/WiFi handover with multipath TCP," CellNet '12: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012.