Internet-scale Experimentation

The challenges of large-scale networked system experimentation and measurements

The state of affairs

- An ever growing Internet
 - ~3 billion people
 - 15 billion devices connected
 - 10 thousands ISPs
 - >52 thousands networks (ASes)
- Tons of money at play
 - Alphabet 3rd Q 2015 revenues \$18.7 billions (+13% per year)

The state of affairs

- Society's increased dependency on ...
 - More, ever-larger Internet-scale systems
 - FB, Skype, Twitter, Google, Akamai, Amazon, Netflix ...
 - Facebook's 1.44 billion monthly users
 - Average time in FB 20'/day
 - Or 20% of all online time

- Yet, we still
 - Can't predict these systems' behaviors
 - or trust their security, performance, resilience, ...
 - Don't know how the network underneath looks like

– ...

Experimentation

- Observe, measure, build and test ideas in working systems
 - To test our theories and pose new questions
 - To validate our assumptions
 - To understand our large and complex systems
 - **–** ...
- But ...
 - How to do experimentation at Internet-scale?
 - What's representative? reproducible? ethical? ...

"Experiments ... the source of most questions, the final test for all answers"

~ R. Feynman

Our goal and road map

- Experiments in today's network
- Strategies and good practices
- Edge network perspective: Network positioning
- Application performance: Public DNS and CDNs
- Moving up the stack: Broadband reliability

A bit of history, for context – Early days

- ~1960 ARPA sponsored research on computer networking to let researchers share computers remotely
 - Electronic computers were scarce resources
 - Renting an IBM System/360 \$5k/month (\$35k/month 2016)
- 1969 First four ARPANET nodes connected
 - UCLA, Stanford Research Institute, UCSB, U. of Utah
 - Key design decision packet switching

A bit of history – Early days

- From 1975 to 1980s
 - Successful ARPANET ~ 100 nodes
 - ARPA research on packet switching over radio and satellite
 - New LANs connected via gateways
 - TCP/IP conversion in 1983
 - Autonomous Systems and backbone AS for scalability

A bit of history – NSF takes over

- Late 1980s NSF takes over
 - NSF work on expanding the backbone
- NSF encourage development of regional networks
 - Three tiers: backbone, regional, enterprise

NSFNET T3 Network 1992

- Enterprises were building TCP/IP networks and wanted to connect them
 - NSF charter prohibited them from using NSFNET
 - 1987 first commercial ISP, many follow shortly

A bit of history – Commercial operation

- By 1990 service providers where interconnected
 - Congress lets NSFNET interconnect with commercial networks
 - By 1995, NSFNET was retired
 - No single default backbone anymore
 - Many backbones interconnected trough Network Access Points
- ~1995 Web
 - Easier to use Internet
 - Million of non-academic users
- Now ...
 - Large ISPs interconnected, regional ISPs, mid-size ISP and eyeballs

Internet as a set of ASes

Internet

A collection of separately, usually competing, managed networks

Autonomous system (AS)

- Set of network elements under a single organization's control
- 1 ISP, can operate N ASes; no AS is managed by >1 ISP

Ases exchange traffic at peering points

- Connections - a link between "gateway" routers in each AS

Classical Internet model

Updated Internet model

Labovitz et al., SIGCOMM 2010

Design principles of the Internet

- Some key principles inferred from early design decisions
- Decentralized design and operation
 - A loose interconnection of networks, not really "one" network
 - Connecting a node to the Internet does not require the consent of any global entity
- IP hourglass or IP over everything
 - Internet overarching goal to provide connectivity – IP is key
 - Easy to incorporate new applications and new communication media

Design principles of the Internet

Stateless switching

- Switches are expected to be stateless wrt connections
- Forward decision based on packet IP's header and routing table
- Results in very simple routers, ... related to ...

End-to-end

- Insight many network functions require cooperation from endsystems for correct and complete operation
 - So, don't try to do it within the network
- Challenges to end-to-end: untrustworthy world, more demanding apps (use of CDNs), less sophisticated users, ...

Design principles and measurements

- Decentralized design and operation
 - Hard to learn the current configuration of the Internet
- IP over everything
 - Complicates measuring hiding details of physical medium
- Stateless switching
 - ... routers don't capture or track anything of the traffic going by
- End-to-end argument
 - Lack of instrumentation at many points in the network, as it encourages the design of network elements with minimal functionality

Measurement and experimentation

- In sum
 - A decentralized and distributed architecture
 - Without support for third-party measurements
- So, measurement efforts
 - have limited visibility (and shrinking)
 - rely on hacks, rarely validated
 - More often that not ... what we can measure is not what we want to measure and, worst, what we think we are measuring

Measurement and experimentation

Given this overall picture ...

- Where should we place our vantage points?
- At what layers of the stack?
- Can we get measurement control & scalability?
- ... repeatability & an end-user's perspective?

Where do we measure?

- Measurements across the wide-area
 - Vantage points in the same places, but across a wider area
 - Distributed platforms for coordinated measurements

And at what layer?

- ...
 - Network infrastructure and routing
 - Traffic
 - Applications
 - The user up-the-stack
- Higher layers, different concerns
 - Censorship
 - Ethical considerations

Outline

- Experiments in today's network
- Strategies and good practices
- Edge network perspective: Network positioning
- Application performance: Public DNS and CDNs
- Moving up the stack: Broadband reliability

On sound measurements

Do the results derived from our measurement support the claims made?

 Key question for validation of measurementbased research, but no standards

A Socratic approach*

- Q1: Are the measurements being use of good enough quality for the purpose of the study? Need metadata!
- Q2: Is the level of statistical rigor used in the analysis commensurate with the quality of the measurements?
- Q3: Have alternative models been considered and what criteria have been used to rule them out?
- Q4: Does model validation reduce to showing that the proposed model can reproduce certain statistics of the data?

*B. Krishnamurthy, W. Willinger

Topology as an example

- Internet topology Why do we care?
 - Performance of networks critically dependent on topology
 - Modeling of topology needed to generate test topologies
 - **–** ...
- Internet topology at different levels
 - Router-level reflect physical connectivity
 - Nodes = routers
 - From tools like traceroute or public measurement projects like CAIDA's Ark
 - AS-level reflects relationships between service providers
 - Nodes = AS
 - From inter-domain routers that run BGP and public projects like Oregon Route Views

Trends in topology modeling

(Observation → modeling approach)

- Long-range links are expensive
 - Random graph (Waxman '88)
- Real nets are not random, but have obvious hierarchies
 - Structural models (GT-ITM, Zegura et al. '96)
- Internet topologies exhibit power law degree distributions (Faloutsos et al., '99)
 - Degree-based models replicate power-law degree sequences
- Physical networks have hard technological (and economic) constraints
 - Optimization-driven models topologies consistent with design tradeoffs of network engineers

Power laws and Internet topology

 "On power-law relationships of the Internet topology," Faloutsos et al. (SIGCOMM '99)

Router-level and AS graphs

From Faloutsos et al. '99

Degree-based models and the Internet

- "Error and attack tolerance of complex networks", R. Albert et al. (Nature 2000)
 - Degree sequence follows a power law (by construction)
 - High-degree nodes correspond to highly connected central "hubs", crucial to the system
 - Achilles' heel: robust to random failure, fragile to specific attack
- Does the Internet have these features?
 - No ... emphasis on degree distribution, ignoring structure
 - Real Internet very structured
 - Evolution of graph is highly constrained

Preferential Attachment

Life persistent questions ...

- (Q1) Are the measurements good enough
 - Router data original goal to "collect some experimental data on the shape of multicast trees"
 - Collected with traceroute ...
 - Inter-domain connectivity data BGP is about routing ...
- (Q2) Given the answer to Q1, fitting a particular parameterized distribution is overkill

Life persistent questions ...

- ...
- (Q3) There are other models, consistent with the data, with different features
 - Seek a theory for Internet topology that is explanatory and not merely descriptive
- (Q4) Yes model validation reduced to showing that the proposed model can reproduce certain statistics of the available data

Outline

- Experiments in today's network
- Strategies and good practices
- Edge network perspective: Network positioning
- Application performance: Public DNS and CDNs
- Moving up the stack: Broadband reliability

Network positioning – what for?

- How to pick among alternative hosts?
 - To locate closest game server
 - To pick a content replica
 - To select a nearby peer in BitTorrent
 - **–** ...
- Determine relative location of hosts
 - Landmark-based network coordinates (e.g. GNP)
 - Landmark-free network coordinates (e.g. Vivaldi)
 - Direct measurement (e.g. Meridian)
 - Measurement reuse (CRP)

GNP and NPS implementation*

- Model the Internet as a geometric space, a host position = a point in this space
- Network distance between nodes can be predicted by the modeled geometric distance
- For scalable computation of coordinates landmarks

GNP and NPS implementation*

- How do you test this? Simulation
 - Controlled experiments in a simulator using a topology generator based on Faloutsos et al. '99
- On a global testbed PlanetLab
 - Large set of vantage points ...
 - Programmable
 - Testbeds provide wide-area network paths

PlanetLab

- A global research network to supports the development of new network services
 - Distributed storage, network mapping, P2P, DHT, ...
- Each research project has a "slice", or virtual machine access to a subset of the nodes

NPS Evaluation

- Operational on PL use a 20hr operation period
- Using 127 nodes, 100 RTT samples per path, all-to-all
 - Select 15 distributed noes as landmarks, others as regular nodes

From T.S. Eugene et al., ...

... adding the last mile via P2P clients ...

- Between PL and Azureus nodes (PL-to-P2P)
 - Ledlie et al, NSDI'07
- Between BitTorrent nodes (P2P)
 - Choffnes et al, INFOCOM'10 (median latency 2x Ledlie's)

Cost of error to applications

- RALP, latency penalty for an app from using network positioning, compared to optimal selection
 - Compare top 10 selected nodes ordered by estimated distance

Access networks – missing piece

- Access networks not capture by existing testbeds
- Ignoring ...
 - High latency variance, last-mile issues, TIV
 - Internet bottlenecks (most in access networks)
 - High heterogeneity (LTE, 802.11, satellite, Cable, Fiber ...)

Growing current testbeds is not enough

 More academic network nodes doesn't help Need to capture the larger Internet

SatelliteLab – challenge

- Add nodes at the edge while preserving the benefits of existing testbeds
 - Stable software environment
 - Complete management of private virtual slices
 - Extensive API for distributed services to be built upon
- Problem with edge nodes
 - Not dedicated testbed nodes
 - Limited storage and processing resources
 - Often located behind middle boxes

SatelliteLab – key ideas

- Delegate code execution to the planets
- Send traffic through satellites to capture access link
- Detour traffic through planets to avoid complaints and work around NATs or firewalls

Outline

- Experiments in today's network
- Strategies and good practices
- Edge network perspective: Network positioning
- Application performance: Public DNS and CDNs
- Moving up the stack: Broadband reliability

Internet experimentation by example

34 DNS lookups

204 HTTP requests

520 KB of data downloaded

Ubiquity of Content Delivery Networks

56% of domains resolve to a CDN

Public DNS and your path to content

Industry proposed solution – Extend DNS

- To avoid impact on Web performance, add client information to DNS requests
 - A EDNS0 extension "edns-client-subnet"
 - Resolver adds client's location (IP prefix) to request

The value of experimentation

- What is the impact of DNS server location on Web performance?
 - No straight answer
- A complex system requires observation and experimentation to be studied and understood
 - Where is the content hosted?
 - Where are the DNS server?
 - Where is the user?
 - What is the impact of the user's last-mile?
 - **–** ...

An experimentalist's questions

- Does it matter? Do you experience a slower
 Web with public DNS?
 - Maybe not if public DNS servers are everywhere
 - Or if content is hosted in very few locations

An experimentalist's questions

- If it does matter, does the EDNS ECS extension solve it?
- If it solves it, is it being adopted by services?
- If it is not being adopted, can an end-host solution address it?
- How would such a solution compare?
- •

- What would you need to explore this?
 - An experimentation platform at the Internet's edge

The value of experimental platforms

- An experimental platform at the network's edge
 - Large set of vantage points ...
 - In access networks worldwide
 - Programmable
 - Can't you not use SatelliteLab?
- Today's platforms
 - Lack the diversity of the larger Internet
 - Assume experimenters == people hosting the platform
 - Or rely on the "common good" argument
 - DIMES, since 2004 453 active users
 - Even SETI@Home- 152k active users, since 1999

Experiments at the edge – goals/challenges

- Host by end users and grow organically
 - How to reach the Internet's edge?
- Efficient use of resources, but not intrusive
 - As many experiments as possible, but not at arbitrary times or from any location
- Easy to use and easy to manage
 - How to program for thousands of nodes?
- Safe for experimenters and users
 - Extensible and safe? We can't run arbitrary experiments

DASU pushing experiments to the edge

- Aligned end-users' & experimenters' objectives
 - Dasu: broadband characterization as incentive
 - Are you getting the service you are paying for?
- Software-based and hardware-informed
 - As a BitTorrent extension and a standalone client, with the router's help
- Easy to use by experimenters
 - A rule-based model with powerful, extensible primitives
- Secure for end-users and networks
 - Controlling experiments' run and their impact

Dasu – Getting to the edge

 Aligned the goals of experimenters and those hosting the platform

- Characterize users' broadband services Are you getting what you are paying for?
- Support experimentation from the edge

	End-user	Experimenter
Coverage	✓	✓
Availability	✓	✓
At the edge	✓	✓
Extensibility	✓	✓

Dasu in the world

Dasu – Easy to use for experimenters

Declarative language for experiments

- Clear, concise experiments
- Easy to check
- Easy to extend

```
rule "(2) Handle DNS lookup result"
when $dnsResult:
        FactDnsResult(toLookup=="eg.com")
then
   String ip = $dnsResult.getSimpleResponse();
   addProbeTask(ProbeType.PING, ip);
end
```


Design – System components

Dasu – Running from the edge

- Secure the platform
 - Sandboxed experiments
 - Resource profiling
 - Secure communication
- Large-scale platform → large-scale impact
 - Controlled aggregated impact of experiments with leases and elastic budgets

– ...

Dasu – Running from the edge

- Minimal impact on user's performance
 - Limit probes to low-utilization periods
 - Pre-defined probe rates
 - Restricted aggregate bandwidth consumption
- Facing the complexity of home networks
 - Increasingly complex home networks
 - No dedicated (cross-traffic)

*iomega NEC

Complexity in number of devices

Number of networked devices found

65% of homes have at least one device

16% of homes have 3 or more

But not all devices play the same role

- Gateways
- External-facing: talks to the outside world
- Internal-facing: talks within the home network

With complexity, externally-facing devices...

devices = 1 complexity = 1 externally-facing devices

The good news ...

 Complexity drives UPnP adoption to simplify home-network management

- UPnP-enabled gateway to infer cross-traffic
 - For network experimentation and broadband characterization from home
 - (the "hardware-assisted" part)

With more devices, UPnP-enabled gateways

As # of devices increases so does the likelihood home gateway supports UPnP

Many opportunities for experimentations

"who else is out there"

Usage rather than presence (microdynamics)

- For broadband characterization
 - No cross-traffic
 - Local cross-traffic from other applications in the host
 - Cross-traffic from other devices

 UPnP-enabled gateways help identify different network usage scenarios inside the home

Usage rather than presence (microdynamics)

Local cross-traffic from other applications in the host Cross-traffic from other devices

Not alone, but you can tell

Cross-traffic from other devices

Many opportunities to measure

 Access link shared with other devices in the network

Dasu – Load-control and experiments

Fraction of measurements

Back to our motivating example

- Different DNS -> different performance
 - How different (worst)?

Data from >10,000 hosts in 99 countries and 752 ASes

The potential of the EDNS approach

Where public DNS impacts performance ...

An alternative end-host solution

- No need to wait for CDN/DNS support
- Don't reveal user's location, just "move" DNS resolver close to the user
 - Run a DNS proxy on the user's machine
 - Use Direct Resolution to improve redirection
 - Recursive DNS to get CDN authoritative server
 - End host directly queries for CDN redirection

Readily available performance

Outline

- Experiments in today's network
- Strategies and good practices
- Edge network perspective: Network positioning
- Application performance: Public DNS and CDNs
- Moving up the stack: Broadband reliability

Broadband and its rapid growth

Instrumental for social & economic development

Broadband and its rapid growth

- Instrumental for social & economic development
- 70+ countries with majority of population online
- 30% higher connection speeds per year, globally

The importance of being always on

 With higher capacities, a migration to "over-thetop" home services

- And higher expectations of service reliability
 - Main complain, from a UK Ofcom survey (71%)*

Broadband reliability challenges

- What does "failure" mean in best-effort networks? What metrics for reliability should we use? What datasets?
- What determines your reliability? ISPs, services within it, technologies, geography, ...?
- What can we do now to improve reliability?
- But, first, do users care? Does it impact their quality of experience?

Importance of reliability

- How do we measure reliability impact on users' experience? At scale?
- Ideally a classical controlled experiments
 - Control and treatment groups, randomly selected
 - Some treated with lower/higher reliability
 - Difference in outcome likely due to treatment

Importance of reliability

- But ...
 - Heisenberg effect change in user behavior
 - Practical issues control over people's networks
 - Degrading connections in home routers, would require consensus (and deter participants); doing it without consent will be unethical

Natural rather than control experiments

- Natural experiments and related study designs
 - Common in epidemiology and economics
 - E.g., Snow, pump location and the 1854 cholera epidemic in London
 - Participants assignments to treatment is as-if random

- Network demand as a measurable metric likely correlated with user experience
 - Change on network usage ≈ change on user behavior
- Look for network conditions that occur spontaneously, control for confounding factors

A brief note on our datasets

- Broadband performance and usage
 - From FCC/SamKnows Measuring Broadband America
 - Collected from home routers, including capacity, loss, latency, network usage
 - ~8k gateways in the US

- To identify source of issues
 - AquaLab's Namehelp
 - Collected from end devices, including traceroutes
 - A subset of 6k end-hosts from 75 countries

Impact of lossy links

- Hypothesis Higher packet loss rates result in lower network demand
- Experiment
 - Split users based on overall packet loss rate
 - Control group loss rate < 0.06%
 - Select users from control and treatment groups with similar regions and services (download/upload rate)
 - \bullet If usage and reliability are not related, H should hold ~50%

Treatment group	% H holds	P-value
(0.5%, 1%)	48.1	0.792
(1%,2%)	57.7	0.0356
>2%	60.4	0.00862

Impact of frequent periods of high loss

- Hypothesis High frequency of high packet loss rates (>5%) result in lower network demand
- Experiment
 - Users grouped by frequency of periods, 0-0.1% of measurements, 0.1-0.5% of measurements ...

– ...

Control group	Treatment group	% H holds	P-value
(0.5%, 1%)	(1%,10%)	54.2	0.00143
(0.1%,0.5%)	(1%,10%)	53.2	0.0143
(0%,0.1%)	(1%,10%)	54.8	0.000421
(0.5%,1%)	>10%	70	6.95x10 ⁻⁶
(0.1%,0.5%)	>10%	70.8	2.87x10 ⁻⁶
(0%,0.1%)	>10%	72.5	4.34x10 ⁻⁷

Broadband reliability challenges

- Do users care? Does it impact their quality of experience?
 - First empirical demonstration of its importance
- What does "failure" mean in best-effort networks? What metrics for reliability should we use? What datasets?
- What determines your reliability? ISPs, services within it, technologies, geography, ...?
 - An approach for characterizing reliability

Characterizing reliability

- To capture different service providers, service tier, access technology, ...
- An approach that uses datasets from national broadband measurement studies
 - e.g., US, UK, Canada, EU, Singapore ...

- Some resulting constraints (e.g., number, location of vantage points, measurement granularity)
- But can be readily applied and may inform future designs

Some classical metrics for now

 Classical reliability metrics: Mean Time Between Failures (MTBF) and Mean Down Time (MDT)

$$MTBF = \frac{\sum Total_uptime}{\# of_Failures} \qquad MDT = \frac{\sum Total_downtime}{\# of_Failures}$$

Availability defined based on MTBF and MDT

$$A = \frac{MTBF}{MTBF + MDT}$$

Key to them, a definition of "failure"

A definition of failure

- What is failure is an open issue
- We use packet loss rate
 - Key to throughput and overall performance
 - VoIP can become unstable at 2% [Xu et al, IMC12]

Characterizing reliability

- Apply this approach to US FCC broadband data
 - Different tech: 55% cable, 35% DSL, 7% fiber ...
 - Different ISPs, large and small, AT&T, Comcast and ViaSat/Exede
 - Every US state with between 0.2% (North Dakota)
 and 11.5% of boxes (California)
- How does reliability varies across …?
 - Providers
 - Technologies
 - Tier services
 - Geography
 - What's the role of DNS?

Top 4 best/worst providers on availability

ISP	At best, 2 9s Compare with 5 9s of telephone service		availability Average dov		downtime
			10%	1%	10%
Verizon (Fibe	Verizon (Fiber) 99.18		99.80	72	17.8
Frontier (Fib	er)	98.58	99.77	124	20.3
Comcast (Ca	able)	98.48	99.66	134	29.7
TimeWarner	(Cable)	98.47	99.69	134	26.9
					00 7
Frontier (DS	L)	93.69	98.87	553	98.7
Clearwire (W	/ireless)	88.95	98.13	968	164.0
Hughes (Sat	ellite)	73.16	94.84	2350	453
Windblue/Via	asat (Satellite)	72.27	96.37	2430	318.0

Only 1 9s, even with a 10% loss rate threshold

But not all failures are the same

Top 4 best/worst ... at peak hour

	Peak hour: 7PM – 11F					PM – 11PN
ISP			Some improvements for fiber and cable		10%	
	Availabilit	ty	% change U	Avanabili	ty	% change U
Verizon (Fiber)	99.11		+8.7	99.83		-14.7
Frontier (Fiber)	98.56		+8.7	99.78		-4.6
Comcast (Cable)	98.39	Worst for the others;			7	-11.7
TimeWarner (Cable)	98.03		cheduled and un-			+1.3
		scheduled downtime?				
Frontier (DSL)	87.98		+90.4	98.42		+39.9
Clearwire (Wireless)	86.35		+23.6	97.57		+29.9
Hughes (Satellite)	60.97		+45.4	91.38		+66.9
Windblue/Viasat (Satellite)	69.44		+10.2	94.14		+61.2

MTBF and MDT per provider

Impact of access technology

Technology – After ISP, the most informative feature for predicting availability

Impact of access technology

- To separate the impact of ISP from technology
 - Same providers, different technology

Reliability across service class

What about service reliability?

- For users, DNS or net failures are indistinguishable
 - But their reliability are not always correlated

Top 6 ISPs by connection and DNS availability

ISP	Availability @ 5%		ISP	DNS
Verizon Fiber	99.67		Insight	99.97
Cablevision	99.53	,	Windstream	99.90
Frontier Fiber	99.47		Qwest	99.90
Comcast	99.45	٠	Hughes	99.90
Charter	99.29		Frontier Fiber	99.90
Bright House	99.28		Cox	99.90

Only one ISP in common

Improving reliability

- Target availability for telephone services
 - Five 9s (99.999%) ~ 5.26 minutes per year
- The best you can get on US broadband
 - Two 9s or ~17hours per year
 - Setting loss rate threshold at 1%, only one provider
- Clearly we need something ... key requirements
 - Easy to deploy
 - Transparent to end users
 - Improving resilience at the network level

Where do reliability issues occur?

- Experiment with 6,000 Namehelp
 - Run pings and DNS query (to Google public DNS) at 30sec intervals, traceroute upon failure

Improving reliability

- Two options
 - Improve the technology's failure rate

Long time and \$\$\$!

- Add redundancy
- Observation: Most users in urban setting "could" connect to multiple WiFi networks
- An approach: End-system multihoming
 - Neighbors lending each others networks as backup
 - Perhaps with limits on time or traffic

Estimating the potential of multihoming

- Using FCC data, group users
 - Per census block, the smallest geographical unit
 - Time online, online during the same period

How many neighboring networks?

Namehelp again, one month measurement

Connecting to neighboring networks

Look at signal strenght

A system for multihoming

- How to fail over to a neighbor's network without interrupting open connections?
 - Multipath TCP for reliability
 - Gateway creates a VPN to a MPTCP proxy
 - Proxy in the cloud (or Planetlab)

Multihoming at home

- A simple experiment in two scenarios
 - Client runs iperf, a second interruption

University 100Mbps University 100Mbps

ATT 3Mbps

In both cases, a fast recovery

Some closing thoughts

- Success of networked systems
 - An integral part of everyday life, critical for modern society
 - Evidence of the success and broader impact of our field
 - But with clear complications for experimentalists
- How can we experiment with critical, global scale systems, how can we provide evidence of the effects of interventions?
- Internet-scale experimentation is still in its infancy
 - Need new platforms, methodologies, standards, legal and ethical guidelines, ...
 - And we need help, we can't do it alone

Acknowledgements

- Graduate students
 - David Choffnes (graduated)
 - John Otto
 - Mario Sanchez
 - Zach Bischof
 - John Rula
 - Ted Stein

- Collaborators
 - Bala Krishnamurthy (AT&T)
 - Walter Willinger (AT&T)
 - Nick Feamster (Princeton U.)
- Funding sources
 - National Science Foundation
 - Google

Internet-scale Experimentation

The challenges of large-scale networked system experimentation and measurements

