Revisiting RTT models

Esteban Carismo, Sebastián P. Grynberg, J.I Alvarez-Hamelin

INTECIN (UBA-CONICET), Universidad de Buenos Aires
Buenos Aires, Argentina

Email: {*{carismo,sgrynberg,ihameli}@cnet.fi.uba.ar

Among 56 studied cases we have observed that stable distributions fit better to the RTT than previous proposed models (i.e., Weibull distribution [1], Lognormal distribution [2]). In order to compare the accuracy of each model, we used the Total Variation Distance [3]. Finally, we show a simple active method, based on RTTs, which is useful to estimate link utilization.

Fig. 1. From 14 Planet-lab nodes we performed a traceroute per second up to the 4^{th} hop, aiming to avoid backward path variation. These plots show histograms of RTTs (blue) for 4 different kinds of behaviors observed. Red curves correspond to histograms based on samples from either a stable distribution or a mixture of stable distributions that fit empirical data. In some cases stable parameters we used Kogon-McCulloch method [4], [5].

Fig. 2. We present the estimation of Total Variation Distance (TVD) for analyzed models: Weibull, Lognormal, 1-Stable (the dataset modeled with just one stable distribution) and M-Stable (the dataset modeled using a mixture of stable distributions). The dashed line distinguishes the cases where the Kogon-McCulloch method [4], [5] was used (to the left) from those where a different estimation method was employed (to the right of the dashed line).

Fig. 3. Taking into account that RTT vary with traffic load [6], we developed a simple method to estimate link utilization. U_{SNMP} was estimated as a ratio of RTTs over a threshold during a time window (300 packets in 5 minutes). We verified this method using U_{SNMP}: information obtained through polling the router’s interfaces by SNMP.

Figure 1 presents different patterns that we found on the 56 cases. Figure 2 shows that 1-Stable and M-Stable models reproduce empirical data more accurately than previous models. Indeed, 80% of the samples (TVD= 0.2) can be reproduced on 83% and 72% of the cases with M-Stable and 1-Stable respectively, while 19% and 0% with Lognormal and Weibull. We have observed that the tail of the stable distribution is related with traffic load. Therefore, if we set a threshold based on stable distribution parameters, we will be able to determine which packet delayed on the router, leading to results in Figure 3.

REFERENCES