
MIMIC: Using Passive Network Measurements to
Estimate HTTP-based Adaptive Video QoE Metrics

Tarun Mangla∗, Emir Halepovic†, Mostafa Ammar∗, Ellen Zegura∗
∗Georgia Institute of Technology †AT&T Labs Research

{tmangla3, ammar, ewz}@cc.gatech.edu emir@research.att.com

Abstract—HTTP-based Adaptive Streaming (HAS) has seen
a major growth in the cellular networks. As a key appli-
cation and network demand driver, user-perceived Quality of
Experience (QoE) of video streaming contributes to the overall
user satisfaction. Therefore, it becomes critical for the cellular
network operators to understand the QoE of video streams.
It can help with long-term network planning and provisioning
and QoE-aware traffic management. However, tracking QoE is
challenging as network operators do not have direct access to the
video streaming apps, user devices or servers. In this paper, we
provide a methodology that uses passive network measurements
of unencrypted HAS video streams to estimate three key video
QoE metrics - average bitrate, re-buffering ratio and bitrate
switches. Our approach relies on the semantics of HAS to model
a video session on the client. We first develop and validate our
methodology through controlled experiments in the lab. Then, we
conduct a large-scale validation of our approach using network
data from a major cellular operator and ground truth QoE
metrics from a large video service. We accurately predict the
value of average bitrate within a relative error of 10% for 70%-
90% of video sessions and re-buffering ratio within 1 percentage
point for 65 -90% of sessions. We further quantify the network
overhead due to video chunk replacement and observe that a
significant number of sessions have a high overhead of 20% or
more. Finally, we highlight several challenges with video QoE
metrics estimation in a large-scale monitoring system.

I. INTRODUCTION

The amount of mobile video traffic has grown tremendously
and is further expected to increase 9-fold within the next 5
years [1]. Mobile network operators (MNOs) are increasingly
expected to provide a high-quality video streaming experience,
as video services assume mobile access. This growing scale
and customer expectations require all operators, including
MNOs to adequately provision their networks and support
video delivery. Clearly, this network planning and provisioning
can be better-informed if MNOs have an in-depth under-
standing of end user QoE and its relationship to network
performance. Specifically, it can help network operators assess
the impact of changing network configurations on video QoE
and also allow long-term QoE-aware network provisioning.

However, estimating video QoE is challenging for a net-
work operator, since they typically do not have access to
the streaming app on user device, the device itself or the
server. Hence, unlike content providers, they cannot use in-
app plug-ins [2], [3] for measuring the streaming QoE. Recent
work [4] proposes an alternative networking paradigm in
which network operators and content providers collaborate,

allowing content providers to share QoE information with
network operators. However, this approach requires significant
effort and is not immediately realizable. MNOs are, therefore,
constrained to use data derived from within their network to
estimate application and service quality, including video QoE.

Most of the existing QoE estimation approaches attempt
to correlate QoS metrics derived from network measurements
with video QoE metrics. OneClick [5] and HostView [6]
develop regression models to detect the QoE of multiple appli-
cations including video streaming. Prometheus uses machine
learning to estimate video re-buffering from flow-level mea-
surements [7]. Similarly, Dimopoulos et al. [8] inspect QoE
metrics sent by the player to the content provider to correlate
them with network-level metrics. A general drawback with
these statistical approaches is that they require ground truth
QoE metrics for initial training of models. Such information
is not easily available to the network operators. This strong
dependence on ground truth QoE metrics for building the
correlation makes it challenging for any network operator to
implement such approaches in practice.

In addition, major content providers have switched to
HTTP-based Adaptive Streaming (HAS) for delivering video.
In HAS [9], the video player at the client dynamically changes
the bitrate quality of requested video to adapt to the network
conditions, also known as Adaptive BitRate (ABR) streaming.
This application-layer bitrate adaptation, makes it more chal-
lenging to translate network QoS metrics to application layer
video QoE metrics. Furthermore, different native players and
even some content providers have proprietary implementations
of the bitrate adaptation algorithms. Thus, models learnt for
one video service might not yield the same accuracy if used
for other services as observed in [8].

In this paper, we propose a methodology called MIMIC1,
that uses semantics of HAS to estimate video QoE metrics
from passive network measurements for unencrypted HAS
videos. MIMIC is based on the observation that the HTTP
logs of HAS videos can give significant information to model
a video session on the client. We use HTTP logs to estimate
three video quality metrics: average bitrate, re-buffering ratio,
and bitrate switches. In addition, we also monitor network
overhead due to chunk replacement which is an important

1MIMIC stands for Measuring Multimedia QoE in Cellular network. The
acronym is suggestive of our approach, i.e. we try to mimic the client video
session playback using network traces

metric for network operators. MIMIC gives a fine-granular
view of video QoE metrics per session by estimating their
exact values as opposed to the categorical estimates made by
earlier methods. An MNO can either use each of these metrics
individually or feed the estimated values into an appropriate
QoE prediction model, such as [10], to get a single score
reflecting the QoE for the video session. MIMIC is similar in
spirit to [11] and [12] that use TCP-layer metrics and HTTP
logs respectively to model a video session at client. However,
these methods were designed for HTTP progressive streaming
and would not work for HAS video. MIMIC is developed in
a controlled environment and then validated on a large-scale
using network data from a major cellular provider and ground
truth QoE metrics from a major content provider.
Our contributions can be summarized as follows:

i) We develop MIMIC, a methodology for estimating video
QoE metrics from passive measurements of HTTP logs;

ii) MIMIC can accurately predict the average bitrate within
a relative error of 10% for 70%-90% of video sessions;

iii) MIMIC is able to predict re-buffering ratio within an
absolute error of 1% for 65%-90% of video sessions, and

iv) We quantify the network overhead due to video chunk
replacement and observe that a significant number of
sessions can incur a high overhead of 20% or more.

Finally, we highlight some limitations of our approach
and challenges encountered in a large-scale QoE monitoring
system. The rest of the paper is organized a follows: Section II
provides a brief background of HAS technology and the
associated QoE metrics. Section III describes methodology to
estimate video QoE metrics in detail. In section IV, we discuss
the results from controlled experiments as well as cellular
network data, followed by a discussion of challenges and
future work in Section V. We conclude the paper in Section VI.

II. BACKGROUND

In HAS, the video is split into chunks of equal duration with
each chunk encoded at multiple bitrates chosen from a set of
pre-defined bitrates. The video player on the client decides the
quality of chunks to stream based on some adaptation logic.
The use of HTTP makes this approach middle-box friendly
and enables content providers to use commodity Content
Distribution Network (CDN) servers. The bitrate adaptation at
the client allows a diverse set of clients to perform well under
a variety of network conditions. As a result, an overwhelming
majority of content providers now rely on HAS-based tech-
nologies such as HLS [13] and MPEG-DASH [14] to stream
videos to users.

The network traffic in an HAS video session consist of a
sequence of HTTP GET requests and responses. When the
client opens the video, the player first downloads a manifest
file by sending an HTTP GET request to the server. This
manifest file has the information about media segments such
as bitrate levels, resolution and request Uniform Resource
Identifier (URI). The player then sends an HTTP GET request
for the first chunk. The quality of the requested chunk is
usually specified in the chunk URI. Once the video chunk has

been fully downloaded, it is decoded and played on the screen.
Meanwhile, the player sends the request for next chunk, whose
quality is decided based on the past chunk throughput and
current buffer occupancy, and this process continues. Note that
players typically do not pipeline chunk requests, i.e., request
for the next chunk is sent only after the current chunk has been
downloaded. Our QoE metrics estimation approach exploits
this strong serial request-response pattern for modeling a
video session using HTTP logs.
QoE metrics: In HAS, QoE is usually characterized by
multiple quality metrics such as average bitrate, re-buffering
ratio, and bitrate switches [10]. Average bitrate reflects the
streamed video quality, based on the requirement for more
bits to encode a higher quality image. Re-buffering ratio
captures the extent to which video stalled because of buffer
underrun. Bitrate switches represents the bitrate and user-
perceived image quality variations in the session.

In addition, the content providers also care about video
startup time (VST) which is the time it takes for the video
to begin playing since the user requested the video. Our
methodology currently does not estimate the VST and we
consider it as a part of our future work.

III. METHODOLOGY

Conceptually, we utilize HTTP logs collected from
the network to model a video session on the client.
We illustrate MIMIC with a mobile app, referred to as
VideoApp (anonymized for confidentiality), from a large mo-
bile video service. We first describe measurements collected
passively and then discuss how these measurements can be
used to estimate different video QoE metrics. We then briefly
describe the benchmark data that we use to evaluate the
accuracy of our approach.

A. Passive Measurements

Our passive measurements include HTTP logs for
VideoApp recorded by deploying a web proxy in the network.
We identify the logs as belonging to the VideoApp by inspect-
ing the request URIs. In addition to the request URI, the web
proxy also provides the HTTP response completion timestamp
and content size. Note that deep packet inspection techniques
could also be used for this purpose, but at higher processing
cost. The log data used for this study is anonymized and does
not contain any user-identifiable information. We only consider
logs that correspond to video chunk requests.

Figure 1 shows a sample chunk requst URI from the
VideoApp session. We use the session identifier field in the
request URI to group the request logs into video sessions.
From the URIs of these chunk requests, we then extract
the chunk identifier and bitrate or quality. We also collect
some meta-data about each session such as device OS, OS

/videoapp/path/V0987654321/track03/segment101.ts?p=324&token=32543563654645

Content ID Chunk quality Chunk ID Session ID

Fig. 1: Chunk URI template and the extracted information

version, content type and content identifier from the request
URI and headers. Note that chunk bitrate (quality) and content
identifiers in the URI are typically represented by arbitrary
or randomized service-specific unique identifiers rather than
human-readable values.
Chunk replacement: It is common to observe multiple chunk
requests with the same chunk identifier, but different bitrate in
the logs. This essentially means that the video client replaced
an already requested chunk. This behavior has been alluded to
in a previous study [15] but has not been quantified at large
scale. Chunk replacement can happen due to several reasons,
including (i) player trying to improve user experience when
network conditions allow, and (ii) recovering from various er-
rors or overly aggressive but aborted attempts for high-quality
chunks. We handle chunk replacement by using only the most
recently downloaded bitrates of each chunk to estimate QoE
metrics, while carefully accounting for all replaced chunks.
The replaced chunks are important from the perspective of
both MNO (represent wasted network resources) and end user
(represent wastage of limited data plan). We call the total
amount of data due to replaced chunks as chunk replacement
(CR) overhead.

B. Estimating QoE metrics

From the passive measurements, we get request completion
time (Ti), chunk quality (Qi) and chunk size (Si) for every
chunk request i in the video session V . The chunk duration
(L) in seconds is obtained by investigating the manifest file
for few videos in out-of-band experiments. We observed that
VideoApp uses different chunk duration for Live and Video on
Demand (VoD) content. The total number of chunks down-
loaded in a session after accounting for chunk replacement are
denoted by N . We use this information to estimate different
video quality metrics in the following manner:
• Average bitrate: We estimate the average bitrate by taking

the time average of the collected chunk size of the session.

b̂r =

∑N
i=1 Si

N × L
(1)

• Re-buffering ratio: Intuitively, re-buffering time is estimated
by keeping an account of video chunks that have been
downloaded and the part of that video content that should
have been played so far. Let Bi denote the total re-buffering
since the beginning of the play until the time chunk i has
been downloaded i.e. Ti. Clearly, B1 is zero by definition
as the initial re-buffering is termed as the video startup
time. The re-buffering time between two consecutive chunk
download times Ti and Ti−1 is denoted by bi. Then, Bi can
be simply written as

∑i
k=1 bk and each of the bi can be

calculated as follows:

bi = max(Ti − T1 −Bi−1 − (i− 1)× L, 0) ∀i ≥ 2 (2)

Here, Ti − T1 −Bi−1 represents the total video that should
have been played since the beginning of the session and
(i− 1)× L represents the video content that has been down-
loaded. The re-buffering ratio can then simply be written as

r̂r =
BN

N × L+BN
(3)

• Number of bitrate switches: Number of bitrate switches can
be calculated simply by calculating the number of times
the chunk quality changed between consecutive chunks.
Here I is the indicator function and has a value of 1,
if the consecutive chunks do not have same quality, zero
otherwise.

ˆbr switch =

N∑
i=2

I(Qi 6= Qi−1) (4)

C. Ground Truth

To validate the accuracy of our approach we require the
actual video QoE metrics. For this purpose, we use session-
level QoE metrics collected by a mainstream 3rd party video
analytics SDK built into the VideoApp. As noted before, this
is the typical approach to QoE monitoring of commercial
video services. It is our understanding that SDKs use API
calls to the native player to register events such as playing,
stopped, buffering at the application layer. The detailed logic
is proprietary to each vendor. The QoE metrics provided by
in-app SDK consist of average bitrate, re-buffering ratio, and
video startup time. We assume that metrics from the SDK
accurately capture user-perceived QoE. The in-app SDK does
not report bitrate switches and chunk replacement. The ground
truth logs are anonymized for privacy by the SDK, so that users
or end devices could not be identified.

IV. EVALUATION

The evaluation involves measuring the QoE metrics of
VideoApp sessions using the network data and comparing them
to the QoE metrics reported by the in-app SDK, referred to
as ground truth. We first conduct experiments in a controlled
environment, followed by validation using the real network
data. In our analysis, we split the VideoApp sessions by content
type i.e. Live or VoD, and Operating System (OS). This
is because the video system parameters and the exact HAS
implementation may depend on the content type and OS. We
consider the two popular mobile OS’s and refer to them as
OS1 and OS2.

A. Evaluation using controlled experiments

Experimental Setup: The experimental setup consists of
a smartphone with the VideoApp installed and a Linux box
acting as a WiFi hotspot. Squid proxy is deployed on the Linux
box to log all HTTP traffic from the smartphone. We use Linux
tc to control the downlink bandwidth to the smartphone. A
single test run constitutes of streaming a specific video in
VideoApp for a duration of 5 minutes and under a specific
bandwidth profile. The collected proxy logs from these test
runs correspond to the logs we can get from the real network
and we use them to calculate the video QoE metrics and
then compare them to the ground truth. Creating a special
test user allows us to positively match each test run with the
VideoApp ground truth logs.

TABLE I: Bandwidth profiles used for controlled experiments.

BW1 constant bandwidth of 10000 kbps
BW2 2000 kbps with 20 kbps from t=180 s to t=240 s
BW3 bandwidth alternating between 2000 and 20 kbps every 30 s
BW4 bandwidth changes every 10 seconds,

range=[20,10000] kbps, mean=2951 kbps, stddev=3932 kbps

TABLE II: QoE metrics estimation results from controlled
experiments: VoD content, OS1

Bandwidth profile Average bitrate (kbps) Re-buffering ratio (%)
M.V. P.V. G.T. M.V. G.T.

BW1 3213 3680 3690 0.61% 0.09%
BW2 1220 1442 1440 3.48% 3.41%
BW3 855 1003 1030 32.08% 32.7%
BW4 1983 2276 2330 11.41% 12.0%

We run experiments with one representative video from
Live and VoD content served by VideoApp. Each video was
continuously streamed under four different bandwidth profiles
described in Table I. The goal of these experiments is to do an
initial rather than exhaustive validation of our methodology.

Results: Table II shows the comparison between the mea-
sured value (M.V.) and ground truth (G.T.) value of QoE
metrics under different bandwidth profiles for VoD on OS1.
Our methodology appears to consistently underestimate the
average bitrate. Upon a closer examination, we find that
the difference in our measurements can be attributed to the
difference between the way we compute average bitrate and
the way the in-app SDK calculates it. The in-app SDK uses the
declared bitrate in the manifest whereas we consider the actual
size of the chunks on the network while estimating the bitrate
value. The declared bitrate represents the peak chunk bitrate
over the entire video, as required by HLS design, thus leading
to higher estimate of average bitrate by the in-app SDK. To
verify this, we also calculate the predicted value (P.V.) using
the declared bitrates in the manifest file. As shown in Table II
the average bitrate predicted using this method is very close
to the ground truth.

Our methodology can predict re-buffering ratio quite ac-
curately with an absolute error less than 1% for VoD. The
results are similar for experiments with Live video as shown
in Table III. In addition, we also calculate the number of bitrate
switches and CR overhead, not shown here as we do not have
the ground truth for these. The controlled experiments show
that we can very accurately predict the video QoE metrics
using the network data.

B. Evaluation using large-scale real network data

Dataset: We deployed a web proxy in the cellular network
of a major operator in the U.S. to obtain HTTP logs for
VideoApp sessions. The logs were collected for a period of
12 days in the year 2017, in a part of the network covering
a fraction of packet gateways. We estimate the QoE metrics
for the logged sessions using MIMIC. Note that we are not
able to store the raw HTTP logs due to large space overhead
but only process the logs in a streaming fashion and retain the
session-level QoE metrics and associated meta-data.

TABLE III: QoE metrics estimation results from controlled
experiments: Live content, OS1

Bandwidth profile Average bitrate (kbps) Re-buffering ratio (%)
M.V P.V G.T. M.V. G.T.

BW1 3012 3242 3270 0.00% 0.14%
BW2 1146 1344 1260 8.87% 10.3%
BW3 769 917 951 12.69% 14.3%
BW4 994 1092 1190 11.70% 13.31%

Ground Truth: We again use the QoE metrics collected by the
in-app SDK. However, unlike the active experiments, it is not
trivial to match the sessions collected on the network with their
corresponding in-app SDK logs. Due to the anonymization of
both data sets, we have to resort to the following matching
logic. We use the session content identifier, session start
time and duration, OS kind and version, and CDN to match
sessions. We further filter out sessions less than 1 minute since
it is challenging to match the network session duration with
the ground truth playtime for such short sessions. In the case
of a single match between data sets, we use it for comparison,
while in the case that a single VideoApp session matched with
more than one proxy sessions, we discard all of them.

For the time period under study, we were able to match
70,214 sessions, which is a small fraction of all VideoApp ses-
sions. Both Live and VoD are well-represented in this set.
Although the efficiency of our highly simplistic matching logic
is low, we still get a large number of sessions to validate our
methodology.
Average bitrate: For average bitrate, we calculate the signed
relative error (δbr) in the estimated average bitrate (b̂r) and the
ground truth average bitrate (br), defined as b̂r−br

br . Figure 2a
shows the CDF of the relative error for sessions split by OS
kind and content type. As expected, we underestimate the the
average bitrate when compared to the in-app SDK reported
bitrate since we are using the chunk size to estimate the
bitrate as opposed to the bitrate values from the manifest by
the in-app SDK. Note that from the point of view of MNO,
the bitrate calculated using chunk size gives a more accurate
indication of network load. We also estimate average bitrate
using the declared values from the manifest in the controlled
experiments. Figure 2b shows the CDF of the relative error
(δcbr). We can predict the average bitrate within a relative
error of 10% for at least 70% (90% for OS1) of sessions.

-20% -15% -10% -5% 0%
0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

(a) Using chunk size

 0% 5% 10% 15% 20%
0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

(b) Using declared bitrates

Fig. 2: CDF of relative error in average bitrate estimation

1-2 2-5
5-1

0
> 1

0

0%

1%

2%

3%

4%

5%

Fig. 3: Median relative error in average bitrate estimation vs.
session duration

We also note some challenges in bitrate estimation. We
consistently overestimate average bitrate, although by a small
value, when using declared values from the manifest. One
reason for this overestimation is that we use all of the
downloaded chunks during the session for average bitrate cal-
culation unlike the in-app SDK which only considers chunks
that have been played. From experiments, we observed that
VideoApp sessions typically start with a low chunk quality
and the quality increases later on as the playback progresses.
Hence, if chunks in the playback buffer are also considered,
it leads to overestimation of average bitrate. To validate this
hypothesis, we classify the sessions into bins according to their
duration and compute the median of the relative error in bitrate
estimation for each bin. As shown in figure 3, the median
relative error decreases as the session duration increase. This
is because the relative contribution of the fixed-size buffer in
the average bitrate decreases as the session playtime increases.
Tracking the buffer occupancy in bitrate calculation can help
make our estimation more accurate.

We also observed that the errors in bitrate estimation are
higher in general for sessions on OS2 as compared to OS1.
We speculate that it could either be because of a different
chunk replacement policy in OS2 or a different methodology
used by in-app for calculating bitrate. We plan to investigate
this in detail in our future work.
Re-buffering ratio: We calculate the signed difference (∆rr)
between the estimated re-buffering ratio (r̂r) and the ground-
truth re-buffering ratio (rr), defined as r̂r − rr. Figure 4
shows the CDF of ∆rr split by OS and content type. We
can accurately predict the re-buffering ratio within an absolute
error of 1% for 90% of session on OS2 and for 65% of sessions
on OS1. Our methodology appears to underestimate the re-
buffering ratio.

To understand this further, we categorize the re-buffering
ratio into low (rr < 1%), medium (1% < rr < 10%) and
high (rr > 10%) and compare the categorical predictions with
ground truth. Table IV and V show the confusion matrices of
these categorical predictions for VoD sessions on OS1 and
OS2 respectively. For both OS types, our methodology can
predict low and high re-buffering sessions with reasonably
high accuracy. However, many sessions with medium re-
buffering are classified low re-buffering. From a network
operator’s perspective, it is more important to identify sessions

-2% -1% 0% 1% 2%
0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

Fig. 4: CDF of error in re-buffering ratio estimation

with higher re-buffering as compared to medium re-buffering.
One possible reason for re-buffering underestimation could

be because of “trick play”. Fast-forwarding or rewinding con-
tent in the video usually leads to resetting of buffer occupancy.
Our estimation methodology does not detect and take into
account trick play and would end up underestimating the re-
buffering ratio in these cases. We also observed higher number
of sessions with medium re-buffering on OS1 as compared to
OS2. We speculate that this could be because of difference in
HAS implementation or in-app SDK’s reporting methodology.
Identifying the root cause of this behavior is a part of our
future work.

C. Additional metrics estimated from network data

Here we show the distribution of two additional metrics
for which we do not have the ground truth. However, they
demonstrate that we can obtain additional insights not other-
wise available from in-app measurements.
Chunk replacement (CR) overhead: CR overhead is defined
as the % of data in a video session transmitted due to replaced
chunks. Table VI shows the CR overhead for VideoApp ses-
sions split by OS and content type. A large number of sessions,
as high as 90%, have non-zero chunk replacement. This can
be attributed to the fact that most of the VideoApp sessions
always start by downloading multiple lower quality chunks
to quickly fill the playback buffer. The player replaces these
chunks with higher quality chunks if it infers there is enough
network bandwidth. This behavior is due to application or
underlying OS native player design. CR accounts for 2.8%
- 6.2% of the total network data for the VideoApp service.
Furthermore, up to 35% of (Live, OS2) sessions have a CR
overhead greater than 20%, which is a non-trivial overhead.

TABLE IV: Re-buffering ratio confusion matrix, VoD OS1

Ground Truth Predicted re-buffering ratio
low rr medium rr high rr

low rr 90.6% 7.7% 1.6%
medium rr 49.9% 47.0% 3.1%

high rr 1.7% 15.5% 82.8%

TABLE V: Re-buffering ratio confusion matrix, VoD OS2

Ground Truth Predicted re-buffering ratio
low rr medium rr high rr

low rr 94.4% 4.6% 1.0%
medium rr 56.5% 32.2% 11.3%

high rr 10.7% 9.7% 79.6%

TABLE VI: Network overhead due to chunk replacement

Con- OS % sessions mean CR % sessions CR over-
tent type w/ non- overhead w/ CR over- head (%
type zero CR (% bytes) head ≥ 20% total data)
Live OS1 52.8% 7.5% 5.2% 2.8%
Live OS2 89.2% 18.3% 35.8% 6.2%
VoD OS1 91.9% 7.0% 10.9% 5.2%
VoD OS2 92.6% 6.5% 9.4% 2.8%

This points to the need of looking into optimizing the trade-
off between improved user experience and network overhead.
However, the adaptation logic and CR behavior can be hidden
within the native player design and not accessible to video
content providers.
Bitrate switching: We compute bitrate switches per minute for
each session and plot the CDF of its distribution in Figure 5.
A large number of sessions have non-zero bitrate switches.
This can be attributed to the player behavior during the startup
phase of the video and later adaptation. The VideoApp player
typically starts with a low bitrate level and switches up the
bitrate as the playback progresses. We also observe high
number of bitrate switches for Live sessions on OS2 and VoD
sessions on OS1. We speculate this could be because of the
differences in the player adaptation logic on these platforms.

0 1 2 3 4

switches per minute

0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

Fig. 5: CDF of number of switches per minute

V. DISCUSSION AND FUTURE WORK

Encrypted Traffic: Our QoE metrics estimation methodol-
ogy relies on extracting information from video chunk URI
and hence is limited to un-encrypted traffic. Specifically, we
extract chunk quality and identifier from the URI. Chunk
quality can potentially be estimated from the chunk size,
especially for CBR videos. However, chunk identifier is not
available from encrypted traffic. We plan to explore alternative
ways to infer QoE metrics for encrypted video in the future, by
exploiting insights and understanding of HAS traffic offered
by MIMIC.

Advertisements: We observed that for some of the VoD
videos in VideoApp, ads are inserted into the playback. These
ads are not part of the HAS stream, but downloaded as single
files. Furthermore, the request URI for these advertisements
did not have any information that would enable us to associate
it to its corresponding session. Note that even other video
streaming apps serve ads in a manner that is different from the
way original content is served. This is because ads are usually
served by a third-party content provider. Detecting these ads in

a stateless manner and then accounting for them in estimating
the QoE metrics remains a challenge.

User interaction: We currently do not track “trick-play”
(pause, fast-forward or rewind) by the user during the session.
MIMIC needs to be modified if we are also to accurately esti-
mate the QoE metrics of these sessions. User interaction makes
it harder to model video sessions on the network, as tracking
these events though network data can be challenging. We are
working on developing techniques for trick-play detection.

Startup time: MIMIC currently does not estimate video
startup time (VST). VST depends both on the time to down-
load the minimum number of chunks required to start playing
as well as other service-specific interactions that take place
inside the app. VST estimation is also part of the future work.

VI. CONCLUSION

We present MIMIC, a methodology to estimate video QoE
metrics from passive network measurements. The results from
large-scale validation show that MIMIC can provide a very
accurate view of key QoE metrics, namely average bitrate and
re-buffering ratio, to a network operator. We do a large-scale
quantification of network overhead due to chunk replacement.
Our future research will use insights from this study to further
improve the video QoE metrics estimation methodology.

ACKNOWLEDGMENTS

We thank our shepherd, David Hayes, and the anonymous
reviewers for their comments and feedback. This work is
funded in part by NSF grant NETS 1409589.

REFERENCES

[1] “Cisco study,” 2017. [Online]. Available: https://goo.gl/uz3SCN
[2] “Conviva: in-app QoE monitoring.” [Online]. Available: https://goo.gl/

kcLC9D
[3] New Relic, “Mobile APM features.” [Online]. Available: https:

//goo.gl/Z75dTl
[4] J. Jiang, X. Liu, V. Sekar, I. Stoica, and H. Zhang, “EONA: Experience-

oriented network architecture,” in Proc. ACM HotNets, 2014.
[5] K. T. Chen, C. C. Tu, and W. C. Xiao, “OneClick: A framework for

measuring network quality of experience,” in Proc. IEEE INFOCOM,
2009.

[6] D. Joumblatt, J. Chandrashekar, B. Kveton, N. Taft, and R. Teixeira,
“Predicting user dissatisfaction with Internet application performance at
end-hosts,” in Proc. IEEE INFOCOM, 2013.

[7] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements,” in Proc. ACM HotMobile, 2014.

[8] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring video QoE from encrypted traffic,” in Proc. IMC, 2016.

[9] S. Akhshabi, A. C. Begen, and C. Dovrolis., “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” in Proc.
ACM MMSys, 2011.

[10] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao, “Deriving and
validating user experience model for DASH video streaming,” IEEE
Transactions on Broadcasting, 2015.

[11] R. Schatz, T. Hofeld, and P. Casas, “Passive YouTube QoE monitoring
for ISPs,” in Proc. IMIS, 2012.

[12] G. Dimopoulos, P. Barlet-Ros, and J. Sanjus-Cuxart, “Analysis of
YouTube user experience from passive measurements,” in Proc. CNSM,
2013.

[13] Apple, “HLS.” [Online]. Available: https://developer.apple.com/
streaming

[14] “DASH.” [Online]. Available: http://dashif.org/mpeg-dash/
[15] A. Mansy, M. Ammar, J. Chandrashekar, and A. Sheth, “Characterizing

client behavior of commercial mobile video streaming services,” in Proc.
ACM MoVID, 2013.

