Streaming Data Analysis Methods for TCP/IP Network Traffic

Network Traffic

Data

Preprocessing

Feature

Extraction

Analysis

Framework

Analysis

Algorithms

Evaluation

Results

Daniel C. Ferreira, TU Wien daniel.ferreira@tuwien.ac.at

Global Approach

Problems

- Traffic analysis pipelines are complex
- What is the best data/preprocessing/analysis/... method?
- Most papers implement the full pipeline without justification for each component
- Is any of these parts "solved"?
- Where does a new researcher to the field start?
- Everyone seems to be doing different things, with no clear trends in the community

Network Traffic Meta-analysis

- What are people doing in Network Traffic Analysis?
- How are people doing it?
- What are the best practices? Are they being followed?
- Which approaches are lacking?

Our Proposal

We propose a formalized data structure that lets us address these questions (and more)

- A JSON file corresponds to each file
- Database is publicly available (71 papers)
 [TU Wien CN Group 2017b]
- Format documentation is public
- Contributions are welcome!
- Tools are coming...

Collected Parameters

Reference: title, authors, journal, open-access **Data:** dataset name, availability, format, traffic type/protocol,

captured/synthetic, year, length, anonymization

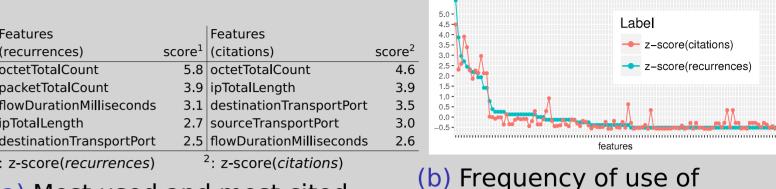
Preprocessing: feature selection technique + type (filter, wrapper, ...), packet features + goal, flow features + key + goal + timeout + direction, flow aggregation features + key + goal + timeout, tools, normalization, transformations

Analysis Method: supervised/unsupervised/anomaly detection was used, tools, algorithm name + learning type + metric + source + parametrization provided

Evaluation: algorithm comparison was made, internal/external validation, dpi/port-based truth, real scenario, train/test split, methods names + types + metrics + sources **Conclusion:** goal of the paper, focus of the paper, improvement claims, reproducibility

* blue means optional parameters

What Next?


- Publication with results about features:

 Daniel C. Ferreira, Félix Iglesias Vázquez, Gernot Vormayr, Maximilian Bachl, and Tanja Zseby. 2017. A
 Meta-Analysis Approach for Feature Selection in Network Traffic Research. In Proceedings of the 2017
 Reproducibility workshop, ACM SIGCOMM, Los Angeles, CA, USA, August 25, 2017, 4 pages
- Format specification + database is completely public; tools will follow shortly
- Incentivize external researchers to contribute
- Continue improving/adjusting format
- Step-by-step approach: have a more in-depth look at each piece of the pipeline

Step-by-step Approach

Meta-analysis of Features

What are the "best" features for traffic analysis?

(a) Most used and most cited features in our database.

(b) Frequency of use of features in publications in our database.

Feature Learning

Need:

Represent traffic with numeric vectors

Difficulties:

Choice of features is not obvious

Current approach:

- Learn which feature vectors to use
- Deep Learning has many successful uses of this idea, but not in network traffic

Stream Processing

Need:

- Stream capable framework
- Ability to run multiple algorithms for comparison

Difficulties:

- Avoid duplicate work
- Assert complete and easy reproducibility

Current approach:

- Modular structure, each module independent of others
- Each module takes streaming input, as it becomes available
- Each module is one Docker container
- Messaging done by Apache Kafka

Problems:

 Kafka might not be fast enough (more testing needed)

Stream Clustering

Need:

Clustering approach for a continuous stream of data

Difficulties:

- Stream is potentially infinite
- Input distribution changes throughout time (concept drift)

Current approach:

- Try existing state-of-the-art algorithms
- Identify deficiencies when applied to network traffic

Problems:

 A framework for testing is necessary (see Stream Processing, above)

References

- A Meta-Analysis Approach for Feature Selection in Network Traffic Research (2017). P. 4. DOI: 10.1145/3097766.3097771
- TU Wien CN Group (2017b). Network Traffic Analysis Database. URL: https://www.cn.tuwien.ac.at/ns-dksp/ntadatabase.html