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Abstract—Service quality commitments in cloud service pro-
visioning are typically described in Service Level Agreements
(SLA). Service availability is always a major parameter to be
included in such SLAs. and the cloud provider is bounded to
guarantee a minimum availability value, for which current cloud
monitoring systems employ a naive estimator. In this paper a new
estimation method is proposed for service availability, which is
based on the bootstrap technique and employs a non-parametric
statistical hypothesis test. Through Monte Carlo simulation, the
method is shown to be much more accurate than the naive one
under three stochastic models for the durations of operating
and outage periods, exhibiting a Type I error probability lower
than 1% in most cases, while the naive estimator yields error
probabilities around 40%.

I. INTRODUCTION

Since its inception, cloud storage has progressively gained
adoption in a variety of contexts [1], [2] among all types
of customers (business as well as individuals [3], [4]), with
a large push on competitive pricing schemes [5]. Among
companies a relevant factor is the promise of a strong reduction
in costs, or at least a switch from CAPEX to OPEX [6].

Though cloud storage is provided free of charge by some
providers for the less demanding customers, who just need
some limited amount of storage, its quality of service is instead
described by a set of Service Level Objectives, embodied in a
Service Level Agreement (SLA), in all other cases. Among the
parameters included in any SLA, availability, i.e. the capability
of providing the service without interruptions, is always a key
requirement [7], [8], which is particularly critical in scientific
applications [9] but is also used as a parameter to rank cloud
providers and switch from one provider to another on the basis
of their performance [10]. Many efforts have been devoted
to assess and/or improve the availability of a cloud provider
(and its datacenters) on the basis of their architecture and
components [11]–[15].

However, the actual availability may fall behind expecta-
tions [16], so that the cloud provider may violate the availabil-
ity SLA and be subject to penalty. Though the cloud provider
may devise its penalty policy to minimize the damage to its
profit [17], it is of paramount importance that the availability
is evaluated correctly, so that both parties are treated fairly
and the cloud provider is not unduly damaged.

In this paper we claim that the current methods to eval-
uate the availability of cloud storage systems exhibit a poor

statistical accuracy and propose a non-parametric statistical
hypothesis test, based on the boostrap technique, to improve
the statistical accuracy of availability evaluation. After defining
availability for a cloud storage system in Section II, the new
method is proposed in Section III. In Section IV we show that:

• the naive estimator yields a Type I error probability
around 40% independently of the underlying model and
of the average outage duration;

• the bootstrap estimator that we have proposed yields a
Type I error probability at least one order of magnitude
lower than the naive estimator;

• the observation interval must be chosen long enough as
to avoid ending with zero or too few outages during the
observation interval;

• the error performance of the bootstrap estimator worsens
as the average outage duration grows (due to the dimin-
ishing number of outage events).

II. AVAILABILITY IN SERVICE LEVEL AGREEMENTS

As noted in the Introduction, the availability is one of the
key parameters included in any Service Level Agreement. In
this section we report a brief review of its measuring methods
and its setting in SLAs.

Though several definitions of availability may be provided
[18], [19], we stick to a simple one, which may be applied
quite straightforwardly to cloud storage. A thorough analysis
of the several parameters that may be included into an SLA
for availability is contained in [20]. Here we consider the
service to be either available or not. Definitions that include
consideration of the delay in providing the data may be
brought back into this framework by considering a threshold
on the delay, so that the service is considered to be available
if the data are delivered within that threshold and unavailable
otherwise. The availability is therefore defined as the fraction
of time the cloud is operating. Since the processes governing
the operations of the cloud are stochastic, we can define the
availability by introducing the two variables S (duration of an
uptime, or operating, period) and D (duration of an outage,
or downtime period). The availability is then

A =
E[S]

E[S] + E[D]
, (1)



where E[·] represents the expected value. An alternative defini-
tion involves the two variables MTTF (Mean Time To Failure)
and MTTR (Mean Time To Repair), so that

A =
MTTF

MTTF + MTTR
. (2)

The two definitions are equivalent if the ”Mean” in Equation
(2) is taken over the population. If it is instead taken over
a sample, Equation (2) represents an operational definition,
so that the quantity measured by this definition is actually a
random variable itself.

In practice, the availability in present monitoring systems as
proposed in the literature is measured by the single instance
value

Â =

∑N
i=1 si∑N

i=1 si +
∑N
i=1 di

, (3)

where N is the number of outages occurring during the
measurement period, and the si’s and di’s are the durations
respectively of the operating periods and the outage periods.
This is the approach taken, e.g., in [21], [22]. This definition
is also that implied, e.g., in the SLA definition proposed
by Amazon, for which the Monthly Uptime Percentage is
calculated by subtracting from 100% the percentage of minutes
during the month in which any of the Included Products
and Services was in the state of Region Unavailable (see
https://aws.amazon.com/ec2/sla/). In the following, we refer to
the estimator expressed by Equation (3) as the naive estimator.

We assume that the cloud monitoring system can probe the
cloud with a frequency as high as desired so as to identify the
onset of an outage with very high precision. For the time being,
we do not consider the problems related to the presence of the
network between the cloud customer (or the cloud monitoring
system) and the cloud itself: as shown in [23]–[25], network
effects may hide the true availability of cloud services. We
assume that the measurement has been somewhat refined by
taking into account the network contribution. We also consider
the measurement to take place over an observation horizon T ,
which in the following will be set as either a month or a year.

An extensive survey of availability targets as set in SLAs is
shown in Table I (excerpted from [26]). We see that the major-
ity of cloud providers claim an ambitious 100% availability.
This is equivalent to say that the cloud is always available.
Even if shutdown periods due to preventive maintenance are
not counted as contributing to the total downtime (a typical
assumption), this claim is hard to believe: no physical system
can exhibit a total absence of failures. As a matter of fact,
contrary to their claims, outages are reported even for those
cloud providers claiming a 100% availability. For example, if
we consider the first provider in Table I declaring uninterrupted
operations (CloudSigma), the company itself declares two
connectivity failures in May 2018 alone (as reported on their
website status.cloudsigma.com).

III. A BOOTSTRAP-BASED TEST

In Section II, we have defined the availability and introduced
the naive estimator. In this section, we propose an alternative

Cloud provider Availability [%]

Amazon Web Service 99.95
AT&T Synaptic 99.9
CloudSigma 100
ElasticHosts 100
FlexiScale 100
GoGrid 100
JoyentCloud 100
layeredtech 100
Locaweb 99.9
Opsource 100
Rackspace 100
ReliaCloud 100
RSAWEB Cloud servers ND
SliceHost ND
Storm On demand 100
Terremark vCloud express 100
VPSNET 100

TABLE I
SERVICE LEVEL AGREEMENT COMMITMENTS FOR AVAILABILITY

estimator based on the bootstrap technique and develop a
related SLA compliance test. In the following, we indicate
by X the bootstrap-based availability estimate over a single
period of observation.

In our case we want to test whether the actual availability
is equal to the target one. We identify the latter as A0, setting
a value for it, e.g., A0 = 0.99. We formulate the test as a
statistical hypothesis test, where the null hypothesis H0 is that
the availability equals the target one, i.e.

H0 =∆ A ≥ A0. (4)

If the null hypothesis is true, the provider is considered as
compliant with SLA commitments. We wish to compare the
null hypothesis versus the alternative hypothesis

H1 =∆ A < A0. (5)

If the alternative hypothesis is true, the provider is considered
as non compliant.

Of course, we do not know the actual availability A but
just its estimate X , which is a random variable. IT is quite
straightforward to assume that such an estimate depends on
the actual availability. We also assume that it belongs to
the location family, i.e. distributions arising from different
values of the availability are just shifted versions of the same
function, with the shift being represented by the availability
itself:

fX(x|A) = fX(x−A). (6)

We recall that the location family includes the large location-
scale family to which well known distributions belong, such as
the normal, uniform, logistic, Student’s t, or the Generalized
Extreme Value one.

If we set a confidence level c (e.g., c = 0.05), we reject
the null hypothesis (hence, declare the cloud provider non-
compliant) when X < t, with the threshold t set by the
following equation, since we use a one-sided test (we are



concerned about the actual availability being lower than the
target one)

P[X < t|H0] = c. (7)

or, equivalently, t is the c-order percentile of X under the
hypothesis H0:

t = X(c)|H0, (8)

Applying the test could be straightforward if we knew the
distribution of X , which we unfortunately do not know. We
can resort to the bootstrap technique, described first by Efron
and Tibshirani in [27], which allows to compute the accuracy
of an estimate when it cannot be derived from a model. In
bootstrap, we apply random sampling with replacement from
a single sample of our variable to obtain a number of bootstrap
replicas, which can then be employed to compute, e.g., the
standard error of the estimate.

In our case, if we generate B bootstrap replicas of the
sequence of running times and outages that has been actually
observed (which provided the value a for the availability,
as measured through Equation (3)), we obtain the empirical
cumulative distribution function F̂X(x), which we can use as
a bootstrap-based estimation of the distribution FX(x)|A = a.
The sought-after distribution under the hypothesis H0 would
then be related to the bootstrap-based one by

FX(x)|H0 ' F̂X(x− a+A0)|A = a (9)

The test condition expressed by Equation (7) can therefore
be expressed as follows

P[X < t|A = A0] = P[X − a+A0 < t|A = a]

= P[X < t+ a−A0|A = a] = c
(10)

Since we can estimate the percentile b̂ = X(c)|A = a by
bootstrap, and b = t+ a− A0 by Equation (10), we have an
estimate of the critical threshold t ' b̂ − a + A0. We reject
therefore the null hypothesis if the observed value is

a < t ' b− a+A0 → a <
b+A0

2
. (11)

The critical threshold on the observed availability is there-
fore the arithmetic average of the target availability and the
c-percentile of the bootstrap estimator.

IV. METHOD VALIDATION

In order to test the accuracy of our estimation procedure,
we have applied it to a set of cases where we are able to
exactly compute the availability. In this section we describe
those cases and report the results of a battery of Monte Carlo
simulation tests.

Our test procedure consists of setting a case where the
statistics of operating and outage periods are well defined,
so that we can simulate the case through a Monte Carlo
approach and compare the simulation results against the true
availability. In the simulation we apply both the bootstrap-
based test that we have described in Section III and a single
instance test. The latter consists in measuring the availability
over the observation horizon as per Equation (3), i.e., the naive

estimator, and compare it against the threshold A0: we declare
the provider non-compliant if we have Â < A0.

The simulation procedure is described as Algorithm 1.

Algorithm 1 Simulation of compliance checks
for i = 1 to Number of simulation runs do

Reset time counter
Reset Overall outage time
while Time counter <Simulation horizon do

Generate random duration of operating period
Generate random duration of outage
Add to overall outage time
Update time counter

end while
Compute availability for simulation instance
Generate bootstrap replicas
Compute bootstrap percentile
Compute critical threshold
Apply bootstrap test as per Inequality (11)
Apply the single instance test

end for

As test cases we have considered the following three mod-
els:

• Markov;
• Poisson-Pareto;
• Pareto-Lognormal.

All three models have been proposed in the literature, as
detailed in the following.

It is to be stressed that the use of models, though proposed
in the literature, is due to them providing a ground truth to
evaluate the bootstrap-based technique. Their use allows us to
simulate a system with a controlled availability. We would not
be able to assess the performance of the method by relying
on experimental data alone, since we would not be able to
associate the true availability value. It is also to be noted that
the bootstrap method is non-parametric, since it does not rely
on specific assumption about the distribution of uptimes and
downtimes.

All the simulations reported in the following have been car-
ried out for two values of target availability A = 0.99, 0.999,
a confidence level c = 0.05, a number of boostrap replicas
B = 1000, and 10000 simulation runs. The simulation design
parameters have been set by first setting the mean outage
duration and then computing the related mean operating period
duration through the equation

E[S] = E[D]
A0

1−A0
. (12)

As a figure of merit for both tests we consider the Type
I error probability, i.e. the probability of rejecting the null
hypothesis when it is instead true. In all the cases we have
examined, we have simulated, we have set the durations of
operating and outage periods according to the target availabil-
ity, so that the null hypothesis is always true, and the Type I
error probability becomes equal to the probability of getting
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Fig. 1. Alternation of states in a Markov model

a no-compliance statement. For the time being, we do not
consider Type II errors.

A. The Markov model

We consider the case where the alternation of states for
the cloud is governed by a Markov process, as considered in
[28], where the durations of both states follow an exponential
distribution. In this case, the cloud switches from the UP state
(running) to the DOWN state (outage) at the rate λ, while it
reverts to the UP state at the rate µ. The resulting availability
is

A =
MTTF

MTTF + MTTR
=

1/λ

1/λ+ 1/µ
=

µ

λ+ µ
. (13)

Setting the simulation parameters is quite straightforward,
since, after setting the target availability A0, we simulate
the operating periods and the outage periods by drawing
pseudorandom numbers from two exponential distributions.
The exponential distribution describing the outage period has
average value

E[D] = 1/µ = MTTR, (14)

while that describing the operating period has average value

E[S] = 1/λ =
1

µ

A0

1−A0
= MTTR

A0

1−A0
. (15)

In Fig. 1 we show the simulation results when the target
availability is A0 = 0.99 and we issue the compliance
statement over a month. We see that the naive estimator is
quite close to flipping an unbiased coin, exhibiting a negligible
dispersion (its minimum value is 0.4341 and its maximum
values is 0.4848). On the other hand, the bootstrap-based
estimator yields an error that is at least 16 times smaller (in
many cases even two order of magnitudes smaller) and appears
to increase with the average outage duration.

If the cloud provider boasts a higher availability, the prob-
lem of correctly estimating it conflicts with the length of
the observation period. In fact, the probability of having no
outages during a month is 83.5% when the availability is 0.999
and the average outage duration is 4 hours, so that most obser-
vation periods will end without any outage to report. In those
cases a naive 100% availability estimate would be reported. We
can examine the performances of the two estimators in Fig. 3.
The curves pertaining to the observation period of 1 month
(indicated in the legend as 1m for short) tell us that the naive
estimator keeps on its Type I error probability close to 50%,
while the performance of the bootstrap-based estimator gets
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Fig. 2. Type I error probability for the Markov model with 0.99 availability
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Fig. 3. Type I error probability for the Markov model with 0.999 availability

worse as the average outage duration lengthens: as the average
outage duration exceeds 4 hours, the Type I error probability
of the bootstrap estimator gets practically identical to that of
the naive estimator. This is not the fault of the estimator, but
rather the consequence of too short an observation period. If
we extend the period over which we issue a compliance/no-
compliance statement to 1 year (indicated as 1y in the legend),
the things turn straight again, as can be seen in Fig. 3: the
bootstrap estimator receives as input a number of outage data
large enough to get an error probability lower than 1% in most
cases, while the performance of the naive estimator remain
close to the flipping coin status.

B. The Poisson-Pareto model

We consider now a different model, which has instead
been derived specifically for cloud services. In this case the



distribution of the number of outages during the observation
interval is described by a Poisson model (so that the duration
of the operating period follows an exponential distribution),
while the duration of outages follows the Generalized Pareto
distribution (GP), hence the Poisson-Pareto name. The cumu-
lative distribution function of the duration of outages is

P[X < x] = Fξ,β(x) =

{
1− (1 + ξx/β)−1/ξ if ξ 6= 0
1− e−x/β if ξ = 0

,

(16)
where β is the scale parameter and ξ is the shape parameter.

The Poisson-Pareto model has been derived in [16] on
the basis of a dataset of customer-reported outages for five
major cloud providers (Google, Amazon, Rackspace, Sales-
force, Windows Azure). The sources of data were Cloutage
(cloutage.org), founded by the Open Security Foundation
in April 2010 but now discontinued, and the International
Working Group on Cloud Computing Resiliency (IWGCR,
hosted on http://iwgcr.org/), a working group with a mission
to monitor and analyze cloud computing resiliency.

The Poisson-Pareto model has been employed in [29] to as-
sess the sustainability of refunds linked to insurance contracts
for cloud services, as well as in [25] to assess the contribution
of the network to the overall unavailability.

After setting the durations of the operating and outage
periods according to the target availability, as described at
the beginning of Section IV, we must set the parameters
of the distributions governing the durations of the operating
and outage periods. As to the exponential distribution for the
operating period, we use Equation (15). Instead, for the Pareto
distribution, we first set the shape parameter ξ = 0.4 on the
basis of the data reported in [16] (it was the value reported
for Google), and then set the scale parameter as

β = (1− ξ)E[D]. (17)

As we have done for the Markov model, we evaluate the
performance of both availability estimators by computing the
Type I error probability. In Fig. 4 we report the results for
the target availability A0 = 0.99 over a month. We observe
a similar behaviour as in the case of the Markov model.
The naive estimator is quite off the mark, with an average
error probability of 0.3794 and minimal dispersion around
that value, i.e, practically independent of the average outage
duration. Instead the bootstrap estimator exhibits a growing
trend with the average outage duration, but guarantees an
error probability not larger than 2% in the range examined,
roughly twenty times lower than what is achieved by the naive
estimator.

If we assume a larger availability figure, i.e. 0.999, we reach
the same conclusions as in the case of the Markov model.
Examining Fig. 5, we see that a larger availability compels us
to issue compliance/no-compliance statements over a longer
period, otherwise the possible absence of outage events over
a short period (such as a month) would distort our estimate.
Turning to a longer observation period strongly reduces the
error probability for the bootstrap estimator (the largest figure
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Fig. 4. Type I error probability for the Poisson-Pareto model with 0.99
availability
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Fig. 5. Type I error probability for the Poisson-Pareto model with 0.999
availability

for 1 year window is now 1.1%), while it has a negligible
effect on the performance of the naive estimator.

If we now compare the actual error figures obtained under
the Markov and the Poisson-Pareto model (rather than just the
trend), we see that there are no appreciable differences. The
bootstrap estimator appears to be rather robust with respect to
the underlying model (we remark that the bootstrap estimator
is non parametric and does not use any assumption about the
actual stochastic process governing the alternation of operating
and outage periods).

C. The Pareto-Lognormal model

We finally consider a third model, which has been derived
from a measurement campaign conducted on an enterprise
cloud system with 3 datacenters over an 18 months period,



reporting 331 outage events. The model was proposed in [30]
on the basis of Anderson-Darling goodness-of-fit tests.

In this model the best-fit distribution for the duration of
operating periods is Pareto, while the outage periods appear
to be best described by a log-normal model. We have then

P[S < x] =

{
1−

(
h
x

)α
if x > h

0 if x ≤ h (18)

for the operating period duration, with α as the shape factor
and h as the minimum value, and

fD(x) =
1

xσ
√
2π
e−

(ln x−µ)2

2σ2 , (19)

for the outage duration.
Though the availability as estimated on their enterprise

cloud is not reported in [30], we can recover the values
MTTF=2349 minutes and MTTR=227 minutes. The former
value is simply obtained as a rough estimate by dividing the
number of outages by the length of the observation period.
The latter value is instead the expected value of the lognormal
distribution, when the location parameter is µ = 4.58 and the
scale parameter is σ = 1.3, as indicated in [30]. Those figures
lead to 91.1% availability.

Since we wish to carry out a hypothesis test adopting
different availability target figures, but want to retain the same
statistical properties as estimated by that measurement cam-
paign, we perform our simulation experiment by keeping the
same Pareto shape factor and the same lognormal coefficient of
variation (i.e. the ratio of the standard deviation to the expected
value) as indicated in [30]. We set then α = 4.94 for the Pareto
model and σ = 1.3 for the lognormal one, since the coefficient
of variation is simply CV =

√
eσ2 − 1.

After setting those parameters, the remaining distribution
parameters can easily be derived. In fact, for each value of
the average outage duration (i.e., each value of MTTR), we
obtain the location parameter of the lognormal distribution as

µ = lnMTTR− σ2

2
. (20)

We can finally recover the minimum value h of the Pareto
distribution by first deriving the average duration of the
operating period MTTF = E[S] through Equation (12) and
then obtaining

h =
α− 1

α
MTTF. (21)

As we have done with the previous models, we report the
Type I error probability. The curves for the case A0 = 0.99
are shown in Fig. 6. We see again that the naive estimator
exhibits poor performance, though quite independent of the
average outage duration. The error probability of the bootstrap
estimator is instead growing with the average outage duration,
but it is nevertheless at least one order of magnitude lower
than the naive estimator, and 5.05% at most.

If the target availability requirement is tighter, we see the
same phenomenon observed for the other models (see Fig. 7):
the error probability of the bootstrap estimator grows heavily
when the observation interval is too short (1 month) and
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Fig. 6. Type I error probability for the Pareto-Lognormal model with 0.99
availability
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Fig. 7. Type I error probability for the Pareto-Lognormal model with 0.999
availability

becomes fast indistinguishable from what is achieved with the
naive estimator. If we get back to a long enough observation
interval, the bootstrap estimator regains its advantage by at
least one order of magnitude. The error probability achieved
in the best cases is anyway a bit larger than what we have
obtained under the Markov and the Poisson-Pareto models.

V. CONCLUSION

A new method, based on the bootstrap technique, has been
proposed to estimate the availability of a cloud storage service.
The method is completely non-parametric, since it does not
make any assumption about the stochastic characteristics of
the service. The method can be employed in cloud moni-
toring systems to issue compliance/no-compliance statements
concerning service availability through a statistical hypothesis



test. While the naive method currently in use in monitoring
systems errs roughly 40% of the time, the new bootstrap-
based one exhibit a Type I error probability lower than 1%
in most cases. The adoption of the bootstrap-based method
in cloud monitoring system would allow a far more accurate
representation of the actual service quality and avoid false
charges of no-compliance in possible disputes between a cloud
provider and its customers.
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