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Abstract—Pervasive coverage and continuous connectivity of
Mobile Broadband (MBB) networks are common goals for
regulators and operators. Given the increasing heterogeneity of
technologies in the last mile of MBB networks, further support
for seamless connectivity across multiple network types relies
on understanding the prevalent network coverage profiles that
capture different available technologies in an area. Correlating
these coverage profiles with network performance metrics is of
great importance in order to forestall disturbances for applica-
tions running on top of MBB networks. In this paper, we aim to
profile MBB coverage and its performance implications from the
end-user’s perspective along critical transport infrastructure (i.e.,
railways in Norway). For this, we deploy custom measurement
nodes on-board five Norwegian inter-city trains and we collect a
unique geo-tagged dataset along the train routes. We then build
a coverage mosaic, where we divide the routes into segments and
analyze the coverage of individual operators in each segment.
We propose and evaluate the use of hierarchical clustering to
describe prevalent coverage profiles of MBB networks along the
train routes and classify each segment accordingly. We further
analyze the areas we classify with each profile and assess the
packet-loss performance of the networks in those areas.

I. INTRODUCTION

Mobile Broadband (MBB) access to the Internet enables
operators to join mobility and communications towards the
common goal of offering subscribers performance and effi-
ciency in highly dynamic mobile scenarios. However, Internet
access under mobility brings a number of challenges, including
high probability of service interruptions. A popular example
of such scenarios is the case of travelers regularly commuting
on public transport infrastructures, such as inter-city trains. In
this context, tens or hundreds of passengers try to access the
Internet simultaneously for entertainment, communication and
work-related tasks, all while moving at high speeds. During
the last years, railway operators throughout the world have
been testing and providing commercial Internet connectivity
solutions aimed at enabling on-board Internet services to train
passengers. Various types of communication solutions have
been advanced [1], [2], including cellular solutions, WLAN-
based solutions or hybrid terrestrial/satellite solutions.

The performance of cellular-based solutions for on-board
connectivity highly depends on the MBB coverage around
the railway lines. MBB operators are the main providers of
coverage maps for other stakeholders, including regulators,
subscribers or businesses such as public transport operators.
These coverage maps usually define the best radio access
technology (RAT) in a region for a MBB operator. However,
they do not offer information on how the distribution of

different RATs in the same geographical region translates to
the end-users experience. Given the increasing heterogeneity
of technologies in the last mile of MBB networks, user experi-
ence highly depends on support for seamless handovers across
multiple network types. Therefore, identifying the network
coverage profiles that capture the distribution of all available
technologies in the same area from the end-user experience is
of great importance.

In this paper, we focus on profiling the MBB coverage
along the critical railway infrastructure in Norway. Then, our
goal is to build a coverage mosaic, where we classify and
characterize railway route segments based on the distribution
of RATs in that segment. For this, we use a vast dataset that we
collect through periodic measurements from custom devices
that we strategically place on-board several passenger trains.
The dataset is pestered by numerous challenges, including high
volume, the mixture of spatio-temporal coordinates and the
presence of qualitative variables (i.e., the RAT value). Fur-
thermore, depending on the deployment of base stations along
the railway routes, the distribution of different RATs highly
varies from one segment to another. Some operators rely on
thresholds they impose of statistical descriptors to characterize
coverage and classify different regions in coverage categories.
Even when envisioning a simple intuitive classification such
as ”good” coverage (where we have dominant 3G and 4G) or
”bad” coverage (where we have dominant 2G or no service),
there is no consensus on what should be the threshold in
terms of percentage of 3G/4G presence in a certain area
in order to label that area with good coverage. Thus, it is
challenging and cumbersome to use statistical descriptors to
define good and bad coverage. In this paper, we leverage
ideas from machine learning to help us overcome limitations
of using classification rules based on statistical descriptors to
characterize coverage. More specifically, we evaluate the use
of hierarchical clustering to characterize the distribution of
different RATs from individual MBB providers along the train
routes. Clustering enables us to maneuver easier this dataset
and determine the salient coverage profiles, characterize them
and then assign segments to the proper profile.

The coverage mosaic we produce successfully captures the
mixture of available RATs as experienced by the end-user
inside the train. Two main coverage profiles emerge from our
analysis, one where 3G is dominant (which we further title
”profile A”) and another where no service is dominant (which
we further title ”profile B”). This validates the intuition within
the community regarding the ”good” and”bad” coverage.



Moreover, through the stability analysis of these coverage
profiles, we demonstrate the need for repetitive measurements
(at least 5-10 measurement runs) in order to profile the
coverage of a certain area. We further analyze the network
performance within each coverage profile and pinpoint the
areas with bad coverage profile as troubles zones with poor
performance. Though we expect this for bad coverage, even
in the areas with good coverage we find high variations in the
network performance, suggesting that frequent handovers in
these areas are a challenge for the operators and impact the
end-user experience.

II. MEASUREMENT SETUP AND DATASET

In this section, we present the measurement infrastructure
that we use in this paper, the measurements we deploy and
the dataset we collect.

A. Measurement Infrastructure

We use the NorNet Edge [3] (NNE) dedicated mobile
broadband measurement platform. We expand the NNE testbed
to include 6 custom NNE measurement devices (i.e., NNE
nodes) active on the NSB1 regional trains in Norway. NNE
nodes are single board computers that run a standard Linux
distribution and connect to multiple MBB operators. The node
connects via Huawei E392-u12 modems supporting 4G/LTE
connectivity.

To measure network performance and capture basic quality
of service (QoS) metrics (e.g., packet loss, latency), we send
a 20-byte UDP packet every second over each connection to
an echo server that is part of NNE backend and then record
a reply packet from the server. A packet is considered lost if
we do not receive a reply from the server within one minute.
We transfer all the data collected on the node to a server
we host in the back-end and then import it into a database.
Along with the measurement results, each node also provides
context information (i.e. metadata) that is very valuable during
the analysis. Furthermore, we access the train GPS location
from the NSB system. For our coverage analysis, we use
the combination of metadata and GPS data results, which we
explain in detail in the following section.

B. Geo-tagged Dataset

The regional trains that host our measurement nodes run
periodically on 4 different national routes2, covering over
2,500 km. We define each one-way train trip on a certain route
as a run. We collect data from these nodes for the two largest
MBB operators in Norway, Telenor and Netcom for 5 months
(from November 2014 to March 2015). The number of runs
we have for each operator on each route ranges from 60 to 150
runs and depends on the public schedule of the trains hosting
the nodes.

1NSB is a government-owned railway company operating most passenger
trains in Norway.

2The train routes are: Oslo-Voss, Oslo-Stavanger, Oslo-Trondheim and
Trondheim-Bodø.

For our analysis, we specifically require geo-localization
of the coverage information from the modems. The trains
update their GPS locations every 10 to 15 seconds in the
NSB fleet management system. For each GPS point, we find
the corresponding RAT value (e.g. No Service, 2G, 3G or 4G)
from the metadata readings. We define a geo-tagged data point
as the GPS point where there is a corresponding metadata
reading3. These geo-tagged data points forms our geo-tagged
dataset.

III. IDENTIFYING COVERAGE PROFILES

Our goal is to build a coverage mosaic, where we segment
the routes and classify the coverage of each segment into
coverage profiles that capture the distribution of RATs as
the end-user would experience it. The purpose of building
such a coverage mosaic is to enable further analysis in terms
of network performance characterization and reliability. In
this section, we propose and evaluate the use of hierarchical
clustering to characterize coverage patterns in space-time.
However, this comes with a number of challenges, which we
formulate below.

A. Motivation and Problem Formulation

Investigating coverage patterns in terms of distribution of
different technologies in the same area over time is challenging
for three reasons. First, the RAT distribution varies greatly
from one segment to another based on the deployment of
base stations in an area. This information is usually not
available from an objective source. Additionally, connectiv-
ity upgrades are common and operators do not make their
strategies public. Second, the geo-tagged dataset is difficult
to work with because of its large dimensionality and spatio-
temporal inconsistency (i.e., data point’s location and time of
reading differ from run to run over the same route). Third, the
measurement data is noisy because of a number of factors,
including specific geography of the area, variable train speed,
number of passengers in the train or congestion in the network.
For example, all the end-users active in an area at a moment
in time might not simultaneously use the fastest available
RAT. All these reasons make efficient characterization of the
network coverage using statistical descriptors challenging and
cumbersome.

To tackle these challenges, we design, implement and evalu-
ate a machine learning methodology that can help us character-
ize coverage patterns in the areas of interest. Our methodology
contains two separate parts: data morphing and clustering.
First, in the data morphing, we propose the segmentation of
the region of interest in smaller areas and spatially group the
geo-tagged data points in these segments. Second, we focus
on capturing the prevalent coverage profiles and classify each
route segment to a profile accordingly.

Although good or bad coverage may seam like a straight-
forward classification, due to the challenges we present above,

3Note that there are cases when we do not have metadata information for
the GPS reading (e.g., when the modem is down, or the IP address is lost). We
discard from our dataset the GPS points with missing metadata information.



it is surprisingly hard to give predetermined quantitative def-
initions of what is good or bad coverage when focusing on
the combination of different RATs in the same area (e.g., is
continuous 2G bad coverage? is it worse having intermittent
3G coverage? how can one set the thresholds on the RAT
distributions to classify good or bad coverage?). We expand
on this issue in the following Section III-C. We propose the
use of unsupervised clustering to help us with the classifi-
cation. The spatio-temporal heterogeneity of the geo-tagged
dataset we collect makes the clustering algorithm a good
fit for identifying patterns in the coverage offered by MBB
providers. In particular, we choose the hierarchical clustering
algorithm [4], [5], which clusters together data instances based
on their similarity [6], thus highlighting the prevalent coverage
profiles in the region.

B. Data Morphing

Our geo-tagged dataset from repetitive runs consists of nu-
merous time-stamped instances of network-specific variables
at different geographic coordinates along the railway routes.
We identify the objects in our dataset as categorical variables
(i.e., the RAT value) with dynamic location (i.e., the results
from the measurement device does not always come in the
same point in space). The interaction between the spatio-
temporal dimensions of the dataset dictates the complexity
and challenges in moving from acquiring the data to drawing
knowledge through data analytics. In order to address these
challenges, we begin by organizing the dataset into instances
that we can easily compare.

Spatial binning. We first divide the railway routes into
smaller segments using a fix grid of 2km × 2km that we
superimpose on Norway’s map. Each square grid block that
overlaps on the train routes contains a segment of the route.
The resulting segments are disjoint and uniquely identified by
the fix spatial coordinates of the square grid blocks that contain
them. We then partition the geo-tagged dataset by grouping the
data points that fall along the same route segment.

In order to make an informed decision on the size of the
grid we use for spatial binning, we investigate the trade-off
between the speed distribution of trains, the granularity of the
geo-tagged data points and the amount of performance mea-
surements we need to assess the MBB performance within a
single route segment. The granularity of the GPS points (which
further dictates the granularity of the geo-tagged data points)
is 10-15 seconds. In order to ensure that we collect significant
network performance measurements (i.e., 100 different UDP
pings) to characterize a geo-unit, we need at least 4 GPS
readings within the same bin. Also, we observe that 98% of
the speeds we register from the fleet management system are
below 120 kph, with majority falling between 50-100 kph.
Considering all the above observations, we decide to use a
grid block of size 2km × 2km. As expected, due to variation
in the speed, the number of GPS points varies. Withal, we
observe that the majority of the route segments have multiple
GPS readings, and approximately 75% of the grid blocks per
route have more than 4 GPS readings. We leave for future

work a detailed analysis of the impact that the size of the grid
we use for spatial binning has on the coverage patterns we
observe.

Coverage Chart Time Series. After the spatial binning, the
route segment with fix spatial coordinates becomes the object
that we further characterize in terms of mobile coverage. A
route segment is characterized by a variable number of RAT
readings, corresponding to the geo-tagged data points from
every run that the 2km × 2km area encloses. In this second
step, we transform the categorical variable representing the
RAT at each geo-tagged data point into a set of continuous
variables that show the distribution of each of the RAT values
(i.e., 4G, 3G, 2G or noS) over the set of data points along a
segment of the route. We define the distribution of RAT over
one run as the segment’s coverage chart. For example, if a
segment contains 5 different geo-tagged data points [noS, 2G,
3G, 3G, 4G], then we can derive the coverage chart of the
segment for the measurement run: 2G: 20%, 3G: 40%, 4G:
20%, noS: 20%.

We merge the runs independently of the train trip direction
along a route to generate a coverage chart time series. To
further ensure that we compare route segments for which
we have similar coverage chart time series and to correct
any artifacts in the GPS readings, we further analyze the
route segments for which we collect coverage charts from a
minimum of 75% of the total number of runs.

C. The Clustering Approach

After morphing the dataset, we reduce the problem to the
matter of quantifying the similarity between the segments’
coverage charts. We exemplify in Figure 1 the spatial variation
of the distributions of different RATs for the case of Telenor
on the Oslo-Stavanger route. As illustrated in the figure, the
distribution of RATs greatly varies in the spatial domain, sup-
porting our claim that defining thresholds on some statistical
descriptors of the RATs distributions to profile coverage is
difficult and nonadaptive. This is consistent for both operators
on all the routes we measure.

In this section, we present the similarity metric we choose,
the clustering method we follow and the approach we use
to determine the optimal number of coverage clusters. We
perform the clustering of segments on a per-route basis, thus
applying the same methodology on datasets we collect along
the 4 different routes .

Similarity metric. In order to calculate the similarity be-
tween two segments, we organize the coverage time series
into vectors of coverage charts we measure at each run over
a route. The length of the vector is fix and equal to the
number of measurement runs we register on a route. In the
case where the coverage chart for a segment is missing (either
due to hardware issues during the run or due to sifting the
data based on the minimum required number of data points),
we artificially populate the coverage chart with null values
for the corresponding coverage mode variables. We then use
the extended Jaccard measure [7] to evaluate the similarity
between two objects.



Fig. 1: The distribution of RAT per route segment for Telenor
along Oslo-Stavanger train route. The x-axis represents the
route segment ID and the y-axis represents the percentage of
each RAT for that particular segment using median, first and
third quartiles. The points on the figure are the median/quartile
values, while the lines show the fitted curves to these points.

Clustering method. The clustering method we select is an
average-link hierarchical clustering method, which organizes
the data objects into a multi-level structure, based on the
similarity between objects. Such methods consider the distance
between two clusters to be equal to the average distance from
any member of one cluster to any member of another cluster.
More specifically, we employ here Ward’s minimum variance
method for clustering [8], which aims at finding compact,
spherical clusters.

Optimal Number of Clusters. Hierarchical clustering
leaves to the user the task of detecting the optimal number of
clusters. To this end, we evaluate a validity index for different
number of clusters [9]. The number of clusters that generates
the best value for the index is then chosen as optimal. There
is no general consensus on which validity index should be
used. In this paper, we consider the Silhouette index [10] that
represents an average, over all the clusters, of how similar the
data in each cluster are.

IV. CLUSTERING RESULTS

In this section, we run the proposed methodology to char-
acterize coverage along the four Norwegian train routes and
then we analyze the results.

A. Coverage Clusters Analysis

We apply the hierarchical clustering method to the coverage
chart time-series of the segments covering the train routes. In
other words, we calculate the similarity between segments’

coverage chart time series and we group together the segments
with similar coverage patterns. We then determine the optimal
number of coverage clusters using the Silhouette index. For all
the four routes and both operators, the Silhouette index gives
2 clusters, which we detail next.

Prevalent coverage profiles. The optimal clustering of
route segments defines the dominant coverage profiles for the
two MBB operators. We observe that the clustering algorithm
identifies two main coverage profiles, which we generically
label as good and bad coverage profiles. In Figure 2, we
show the characteristics of these two coverage profiles, which
consist of the average RAT distributions [2G, 3G, 4G, noS]
over all runs for all the segments in the same cluster.

When analyzing the coverage profiles, we note that, in the
areas with Profile A, Telenor has around 70% 3G accompanied
with 15% 4G, while Netcom compensates with higher 3G
availability (85% 3G) for its slower 4G deployment (5%
4G). This clearly shows the different deployment strategies of
the operators. Furthermore, we observe slight differences in
the profiles of different routes. For example, the Trondheim-
Bod route in the Profile A areas of Netcom clearly stands
out because it has a lower 3G and higher noS percentage
compared to the other routes. For the Profile B coverage areas,
we observe a high degree of No Service for both operators,
which combines with a considerable amount of 3G and 2G.
The distribution of 2G and 3G varies considerably among
different routes. For both operators, the segments with Profile
B coverage correspond to a large part of the critical transport
infrastructure and concentrate in the rural inter-city area.

Coverage profiles on route. We next exemplify the cover-
age profiling and show the results we obtain for the Oslo-
Stavanger route. In Figure 3 we depict the results for the
hierarchical clustering we obtain for Oslo-Stavanger, both for
Telenor and Netcom. Each subplot contains the dendrogram of
the hierarchical clustering grouping according to the similarity
measures we choose. We group the segments into two main
coverage clusters, namely the Profile A and Profile B coverage
clusters. We note that for both operators, the two clusters are
well distanced. Additionally, the distances between elements
within the same cluster are relatively small. Thus, the den-
drogram allow us to clearly observe the separation between
the clusters according to the similarity measure, validating the
result of the validity index.

Though, using the Silhouette index, we systematically dis-
cover two prevalent coverage clusters that dictate the coverage
profiles, we can further divide these clusters into smaller sub-
clusters with more homogeneous profiles. In some cases, other
indexes such as the Dunn or DB indexes indicate a larger
number of clusters, because of the heterogeneity between the
coverage time series of each of two major clusters. We see
in Figure 3 that the coverage clusters contain several coverage
sub-profiles that highlight the predominance of one RAT or the
mixture of several RATs. For example, in the case of Telenor,
we identify 4 different sub-clusters in the Profile A ”good”
coverage cluster, underlining the increasing heterogeneity of
technologies in the MBB networks. For future work, we plan
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Fig. 2: Coverage profiles along the four measured routes in Norway, for (a) Telenor and (b) Netcom. The coverage profile
consists of four features that show the distribution of the four RATs over the segments in the same cluster.
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Fig. 3: Clustering dendrograms showing the prevalent cover-
age profiles (i.e., Profile A and Profile B ) and the coverage
sub-profiles along Oslo-Stavanger route, for (a) Telenor and
(b) Netcom. We generate the dendrogram of the hierarchical
clustering according to the similarity measures we show on the
y axis. On the x axis we show the ID for each route segment
we cluster.

to collect MBB metadata information with a 1-sec granularity
and further analyze the impact of sampling on the clustering
results.

B. Coverage Clustering Stability

In this section, we focus on coverage cluster stability and
investigate the minimum number of runs that is sufficient to
classify a segment in one of the coverage profiles. Our goal
is to quantify how much additional information regarding the
coverage can each run bring to the clustering problem.

To this end, we run the clustering approach we explain in
Section III for varying number of runs n between 1 and 50.
Using the resulting coverage chart time series from n mea-
surement runs, we cluster the segments and separate them in
Profile A and Profile B coverage clusters. For example, in order
to find the clusters of segments using only 2 measurement
runs (n = 2), we select any pair of runs among all runs and
apply the clustering algorithm. We thus obtain an assignation
of coverage profile per route segment, for all routes and both
operators. For each n, we repeat this exercise for 100 different

combinations of n runs out of the ones available on each route.
We obtain 100 different assignation of the coverage profiles
per segment for each size n of the set of runs we use as input.
In order to gauge the differences between the 100 coverage
profile assignments for every n input measurement runs, we
calculate the similarity between these 100 coverage profile
assignments. We use the Jaccard distance [7], which is well-
defined for binary vectors (for each segment, we assign 1 for
Profile A and 0 for Profile B).

In Figure 4 we show the average Jaccard distance between
the coverage profile assignments as a function of the number
of runs we use as input. We show this for each operator and
every route we measure. We conclude that individual runs
are highly dissimilar, generating highly variable assignations
of coverage profiles for the analyzed grid blocks. This is
reflected in Figure 4 by the average distance corresponding
to the number of runs equal to 1. However, we observe that,
in order to obtain a stable coverage profile assignment to each
grid block, the minimum number of drive runs required is
between 5 and 10. This result is consistent over all the routes,
for both operators.

C. Coverage Profile Adaptability

Previously, we determined that 5-10 measurement runs
bring enough to decide whether a route segment has Profile A
or Profile B coverage. In this section, we aim to capture the
evolution over the measurement period for these two coverage
profiles in terms of the average distribution of RATs over the
route segments that fall within each coverage cluster. We use
a sliding window of 10 measurement runs over the available
geo-referenced dataset and run the clustering approach we
propose in Section III to assign each segment to the good
or bad coverage cluster. This analysis allows us to capture the
technology upgrades over the period of 5 months we measure.
In Figure 5, we exemplify this analysis for the Trondheim-
Bodø route, which is the one where we collect the highest
number of measurement runs. We note that the coverage
profiles are overall stable for both operators. However, for
Telenor we observe a slight increase in the 4G distribution
in the areas with Profile A coverage. Also, there is a small
improvement in the 3G distribution in the areas with Profile
B coverage along the Trondheim-Bodø. This shows that our



0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of Drive Runs

A
ve

ra
g

e
 J

a
c
c
a

rd
 D

is
ta

n
c
e

Oslo−Stavanger
Oslo−Voss
Oslo−Trondheim
Trondheim−Bodo

(a) Telenor

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of Drive Runs

A
ve

ra
g

e
 J

a
c
c
a

rd
 D

is
ta

n
c
e

Oslo−Stavanger
Oslo−Voss
Oslo−Trondheim
Trondheim−Bodo

(b) Netcom
Fig. 4: Stability of coverage profile assignment in function of the number of measurement runs we use to build the coverage
chart time series of the route segments.
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Fig. 5: Evolution of the coverage profiles when using a sliding window of 10 measurement runs to derive them.

methodology is capable of capturing technology upgrades in
the operators’ networks.

V. COVERAGE IMPLICATIONS: RELIABILITY AND
PERFORMANCE

In this section, we focus on how coverage profiles correlate
with the performance of the networks from the end-user
point of view. This analysis opens the future possibility of
using the resulting coverage mosaic with coverage profiles
as an indicator for network performance. Furthermore, this
will enable the design of contex-aware algorithms to improve
the application quality of experience for end-users. We now
turn to investigating per-profile MBB performance in terms of
downtime and packet loss as key performance measures.
Uptime. To calculate connection uptime in a time window T ,
we divide the number of sent packet in T by the length of T .
In our case, T represents the time that the NNE node spends
inside a grid block, and has a minimum value of 30-45 sec.
Figures 6a and 6b show the CDF of the fraction of uptime for
each route and cluster combination. As expected there are clear
differences between areas with different coverage profiles,
with the areas with Profile B coverage (”bad” coverage) profile
exhibiting very low uptime caused by the high percentage
of no service. Furthermore, there are clear spatial differences
between operators. For instance, the worst performing route
in the Profile B coverage cluster is Oslo-Stavanger for Telenor
and Trondheim-Bødo for Netcom. Trondheim-Bødo is the
best performing route with Profile B coverage for Telenor.
These differences indicate that multi-connectivity, i.e. the
use of several operators simultaneously, can improve users
experience along the same route. Analyzing differences in

uptime between operators and between routes in conjunction
with routes coverage profiles (see Fig. 2), indicates a tight
coupling between coverage profiles and uptime.

Packet loss. Figures 7a and 7b show the CDF of packet
loss in a grid block. We measure a significant difference in
the extent of loss between Profile A and Profile B coverage
clusters. Loss, however, remains high in the Profile A (”good”
coverage) coverage cluster. Between 30% and 50% of our
samples depending on the operator and route exhibit more than
1% packet loss. This can be explained by the co-existence of
different RATs and the need for frequent handovers in the
areas with Profile A coverage. Further, we observe that the
ranking of route segments with Profile A coverage in terms of
packet loss matches their ranking in terms of uptime. There
is, however, less similarity between the Profile B coverage
routes loss and uptime rankings: the worst route is always
similar. We believe this similarity in ranking is because packet
loss is usually experienced in areas with challenging coverage
conditions (i.e., larger percentage of no service) which can
also lead to a connectivity loss. We also measure how loss in
a grid block varies in different runs and find that irrespective
of the operator and route, the standard deviation of packet
loss is twice as much the mean for at least 50% of the grid
blocks. Interestingly, this variability is higher for areas with
”Profile A” coverage (which can be perceived as ”good” cov-
erage), which underlines the fact that one-off measurements
are not enough to make conclusions about performance under
mobility.
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Fig. 6: Uptime per route, run and cluster.
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Fig. 7: The distribution of packet loss in a grid block for different routes.

VI. RELATED WORK

Building accurate and reliable coverage maps has been in
the attention of the community and a magnitude of work exists
in this area. Drive tests are widely used by MBB operators
for coverage assessment and performance monitoring. The
drawbacks of this technique (e.g., high cost, spatio-temporal
sampling) act as incentive for the design of new methodologies
that address the before-mentioned issues [11], [12]. In this
sense, leveraging crowdsourced dataset may help verify cov-
erage maps [13], but this also suffer from a series of limitations
(e.g., lack of control and repeatability). In this paper, we ar-
gue that piggy-backing mobile broadband measurements onto
public transport infrastructure is an efficient, cost-effective and
automated alternative to drive tests.

Data analytics approaches are receiving much attention from
the community, due to their capabilities to draw useful infor-
mation from large databases collected from the network [14],
[15]. Coverage prediction methodologies based on geostatis-
tics [16], [17] in wireless networks constitute another approach
in the direction of data analytics. To the best of our knowledge,
this paper is the first attempt in mobile coverage profiling using
hierarchical clustering of multivariate time series. Similar
solutions have been proposed in the area of spatio-temporal
data mining with different applications in real life e.g. [18],
[19]. This technique enables us to generate adaptive coverage
profiles, which are based on real measurements and reflect the
deployment reality of MBB connectivity solutions and their
evolution in time.

Unlike previous efforts that ran performance measurements
aboard public transport [20], [21], we focus on coverage
with a time-domain component and its implications in terms
of performance as experienced by end users. The resulting

geo-located mosaic of coverage profiles further enables our
analysis in terms of network performance characterization
and reliability and whether coverage profiles can be used
as an indicator for performance. Along these lines, in the
past years we have seen increased interest in the networking
community from different parties (e.g., researchers, operators,
regulators, policy makers) in measuring the performance of
fixed broadband networks e.g. [22], [23] and mobile broadband
networks e.g. [24]–[26].

VII. CONCLUSIONS AND FUTURE WORK

MBB networks are the key infrastructure for people to stay
connected, especially in high mobility scenarios (e.g., when
using public transport). MBB coverage profiling from the
end-user experience while on critical public transport routes
are of great importance to many stakeholders. At the same
time, this is a challenging problem, since even a straight-
forward classification of coverage into ”good” or ”bad” is
very difficult to grasp in quantitative thresholds. In this paper,
we evaluate the use of hierarchical clustering to build a
coverage mosaic of MBB technologies in an area and analyze
its implications in terms of performance. By piggy-backing
network measurements onto public transportation vehicles via
the NNE platform, we first obtained a unique dataset that (i)
captures the coverage and performance from user’s perspective
and (ii) provides repetitive measurement runs on the same
route, in similar conditions. We then leveraged hierarchical
clustering in order to identify and characterize prevalent cov-
erage profiles. Though in this study we look at the case of
railways in Norway, the methodology can easily be generalized
for running a similar study in other regions or applying it to
a different datasets, (e.g. crowd-sourced data). A copy of the



dataset we used in this paper is available for open access in
Zenodo4, as well as the code for the clustering approach.

Our results reveal that the clustering approach can accu-
rately group together regions with high similarity in terms
of coverage. Based on the mixture of RATs and the time-
domain evolution, two main coverage profiles emerge: Profile
A -where 3G dominates, and Profile B - where No Service
dominates. This maps onto the general intuition of ”good” and,
respectively, ”bad” coverage. We then analyze the identified
coverage profiles, both in terms of stability and performance.
The stability analysis investigates the similarity between dif-
ferent runs over the same route, with the express purpose of
informing the amount of measurement repetitions we require
to accurately observe stable coverage profiles. We find that we
need at least between 5 to 10 measurement runs in order to
achieve a stable coverage profile in an area. We then focus on
how coverage profiles correlate with the performance of the
networks from the end-user point of view. For this, we assess
packet loss performance per coverage profile and find that it
highly varies for areas with Profile A coverage. This results is
counter-intuitive because Profile A present a high percentage of
superior RATs. This indicates that, although we can derive this
profile with few measurement runs, further characterization of
the performance requires more analysis, e.g., correlation with
the network congestion and measurement time of the day.

For future work, we plan to use the coverage mosaic in
the design of context-aware tailored solutions for applications
to avoid disturbances due to patchy or lack of coverage
and, hence, improve the application performance and end-
user experience. Additionally, we aim to understand how our
dataset compares with data generated through crowd-sourced
efforts. Our goal is to investigate whether merging different
datasets is beneficial and can lead to building more accurate
coverage maps.
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[3] A. Kvalbein, D. Baltrūnas, J. Xiang, K. R. Evensen, A. Elmokashfi, and
S. Ferlin-Oliveira, “The Nornet Edge platform for mobile broadband
measurements,” Elsevier Computer Networks special issue on Future
Internet Testbeds, 2014.

4http://dx.doi.org/10.5281/zenodo.47707

[4] A. J. Scott and M. J. Symons, “Clustering methods based on likelihood
ratio criteria,” Biometrics, vol. 27, no. 2, pp. pp. 387–397, 1971.
[Online]. Available: http://www.jstor.org/stable/2529003

[5] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[6] H. Alt and M. Godau, “Computing the fréchet distance between two
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